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In this paper, we propose a copula ML estimation method for the sample selection model 
using the Ali-Mikhail-Haq (AMH) copula. The proposed AMH copula ML estimation is 
compared with the well-known bivariate ML estimation and Heckman’s two-step 
estimation. Monte Carlo experiments are conducted to compare their performance in terms 
of the mean squared error (MSE) depending on the following 2 conditions: (i) whether the 
imposed distributional assumption is correct, and (ii) whether some regressors of the 
participation and outcome equation are correlated. The results of the experiments show that 
the estimation results for the proposed method can be better than those of the two well-
known methods, particularly when the imposed distributional assumption is incorrect and 
some regressors of the two equations are correlated. Hence, the proposed method can be a 
practically useful alternative for the sample selection model. 
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I. Introduction 

 
The bivariate normal maximum likelihood (BN ML) estimation method by 

Heckman (1974, 1978) and the two-step estimation method, also by Heckman 
(1979), are well-known parametric methods for the sample selection model where 
the random sample assumption fails. Heckman (1974, 1978) proposed the ML 
estimation method by imposing bivariate normal assumptions on the two error 
terms of the participation equation and the outcome equation. Heckman (1979) 
also proposed to use the two-step estimation method to eliminate the sample 
selection bias introduced by the usual least squares (LS) estimation of the outcome 
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equation when the two errors are correlated. Such a two-step estimation procedure 
is referred to as “Heckit”. Both parametric methods have been the most extensively 
used to estimate the sample selection model, and these depend on the critical 
assumption that the two error terms are jointly normally distributed. 

The joint distribution of the two error terms in the selection model can be 
approximated in flexible way by using copula. In this paper, the Ali-Mikhail-Haq 
(AMH) copula ML method is proposed for the sample selection model as an 
exemplary copula ML, and its validity in terms of MSE is assessed compared to BN 
ML and Heckit. To assess the validity of the proposed method over the two well-
known estimation methods, some Monte Carlo experiments are conducted. Two 
conditions are considered for the Monte Carlo experiments. One is whether the 
imposed assumption on the joint distribution is correct or not, and the other is 
whether some regressors of the two equations are correlated or not. The correlation 
among the regressors of the two equations is considered in terms of the near 
multicollinearity problem in Heckit as pointed out by Nawata (1993) and Nawata 
and Nagase (1996). The results of the Monte Carlo experiments show that the 
proposed estimation method can be a good alternative to estimate the selection 
model based on the mean squared error (MSE). In particular, when the imposed 
distributional assumption is not correct and some regressors of the two equations 
are correlated, the proposed method shows the smallest MSE. 

Many studies have been published on the copula. Chen, Fan and Tsyrennikov 
(2006) used the copula to explore efficient sieve estimation. They showed that a 
plug-in copula maximum likelihood estimator for all smooth functionals with 
unknown marginal distributions is semiparametrically efficient. Zimmer and 
Trivedi (2006) extended the bivariate copula to the trivariate copula by allowing for 
two dependence parameters. Oh and Patten (2013) proposed a copula-based 
simulated method of moments estimation and established the consistency and 
asymptotic normality of their proposed estimator. In particular, the copula has been 
actively used in finance and insurance analysis. For example, see Patten (2006), Fan 
and Gu (2003) and Hu (2006). There have also been many publications about the 
sample selection model since Heckman (1974, 1976, 1978, 1979).1 Lee (1983) 
extended the sample selection model by trying to allow for more flexible marginal 
distribution, which turned out to be the introduction of the Gaussian copula. 
Recently, semiparametric and semi-nonparametric works have been actively 
explored in the selection model literature. See Gallant and Nychka (1987), Vella 
(1992, 1993), Chen (1997), Honore, Kyriazidou and Udry (1997), and Das, Newey 
and Vella (2003). 

However, there are only a few publications about the selection model using 

____________________ 
1 Cragg (1971) also considered diverse limited dependent variable models, one of which was the 

same as the selection model. 
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copula. For example, see Lee (1983) and Smith (2003). The main reason for the 
scarcity of copula sample selection model literature may be related to the fact that it 
is not trivial to obtain the joint distributions of the two unobserved error terms via 
copula. That is a stark contrast with the widespread use of copula for financial 
market analysis. Usually, financial variables such as asset prices are observed, and 
thus it is relatively very easy to handle them by using copula. Smith (2003) proposed 
to use a copula approach for the sample selection model. He tried several copulas to 
estimate the sample selection model. But, his estimation was concentrated on the 
copula parameter and Kendall’s tau. 

This paper is similar to Smith (2003) in that a parametric copula ML is 
considered. However, we focus on the performance of the proposed copula ML 
estimation method, and conduct comparisons against two other well-known 
parametric estimation methods. For that goal, unlike Smith (2003), our approach 
employs some Monte Carlo experiments instead of using actual observations since 
we can control the specification of the model depending on the true data generating 
process in the experiments. The results of the Monte Carlo experiments suggest that 
the proposed AMH copula ML method can be a practically useful alternative 
method to the BN ML and Heckit methods to estimate the sample selection model 
since it exhibits good performance in terms of MSE, particularly when researchers’ 
estimation models are misspecified. 

The remaining of the paper is organized as follows. In Section 2, the sample 
selection model and two well-known estimation methods are addressed. Moreover, 
the AMH copula ML estimation method is proposed for the selection model. In 
Section 3, Monte Carlo experiments are conducted to confirm the validity of the 
proposed method. In Section 4, some concluding remarks are provided. 

As to the notations, a bold letter denotes a parameter vector, “ d¾¾® ” denotes the 
convergence in distribution, “ : ” denotes “distributed to”, and the distribution 
function of a random variable X  is denoted by ( )XF × . Moreover, uppercase 
letters denote random variables, while lowercase letters denote realizations. 

 
 

II. Sample Selection Model 
 
One typical example of the sample selection model is the female worker’s wage 

model. The female worker’s wage is the outcome variable, which is observed only 
when the female person participates in the labor market. In this paper, we consider 
a typical bivariate error related sample selection model in Heckman (1979). It 
consists of a participation equation and an outcome equation. The participation 
equation can be defined as follows. 

 

1 1( 0)Y I Y*= >  where 1 1 1Y X V* ¢= +b ,  (1) 
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1Y*  is a latent variable, and ( )I ×  is the indicator function. 1 1Y =  indicates 
participation, while 1 0Y =  indicates no participation. The outcome 2Y  is 
observed for the participant, but not for the non-participant. Hence, the outcome 
equation can be defined as follows. 

 

2 1
2

1

if 1

if 0

Y Y
Y

Y

*ì =ï= í
- =ïî

  (2) 

 
where 2 2 2Y X V* ¢= +d  and 2Y*  is a latent variable, and “- ” indicates that the 
outcome is missing.2 Both equations (1)-(2) involve the latent variables 1Y*  and 

2Y* , hence we need some assumptions for the covariate jX  and the error term jV  
for each 1,2j = . 

 
Assumption 1. (i) Equations (1) and (2) hold. (ii) 1V  and 2V  are independent of 
( 1 2,X X ). (iii) Each error term , 1,2jV j = , is continuously distributed with its density 

jVf . 
 
There are two well-known estimation methods for the selection model. One is the 

BN ML estimation by Heckman (1974, 1978), and the other is Heckman’s two-step 
estimation, the so called “Heckit”, also by Heckman (1979). Both estimation 
methods depend on the bivariate normal distribution assumption for the two error 
terms ( 1 2,V V ). 

 
2.1. Two Well-known Estimation Methods for the Sample Selection Model 

 
Throughout the paper, we suppress the conditioning of 1X  and 2X  for 

notational convenience. 
 

Assumption 2. The joint distribution of the two error terms ( 1 2,V V ) given ( 1 2,X X ) is 
the following bivariate normal distribution. 
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Under Assumptions 1 and 2, the two well-known estimation methods are 

proposed by Heckman (1978) and Heckman (1979). Both will be addressed briefly 
in the following two subsubsections. 

____________________ 
2 One may denote “ - ” as zero. 
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2.1.1. Bivariate Normal (BN) ML Method 
Under Assumptions 1-2, the log likelihood function is 
 

1

log ( ) ( )
n

i
i

L
=

=ålq q   (3) 

 
where 

 
[ 1 1(1 )log ( )i i iy x¢= - F -l b   

2

1
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where 2( , , , )r s¢ ¢ ¢=q b d . Hence, the maximum likelihood estimator ˆ

BNq  is 
 

ˆ arg max log ( )BN L=
q

q q  

 
where log ( )L q  is defined in (3). It is well known that under Assumptions 1-2 and 
usual ML regularity conditions, ˆ

BNq  is consistent and asymptotically normal, that 
is, 

 

0,
ˆ( ) (0, )d

BN BN BNn N V- ¾¾®q q   (4) 

 

where 1 0 , 1 0 ,( ) ( ) 1[ ]BN BNV E
¶ ¶ -

¢¶ ¶= l lq q
q q  and 0, 0 0 0 0,2( , , , )BN r s¢ ¢ ¢=q b d . The consistent 

estimator of the asymptotic variance V  is 
ˆ ˆ( ) ( )1 1

1
ˆ ( )i BN i BNn

iV n ¶ ¶- -
= ¢¶ ¶= å l lq q

q q  where 

2

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )( , , , )i BN i BN i BN i BN i BN

r s
¶ ¶ ¶ ¶ ¶

¢ ¢¶ ¶ ¶ ¶ ¶
¢=l l l l lq q q q q

q b d . 
 
2.1.2. Two-step Estimation Method: Heckit 
It is worthwhile to note the following well-known remark. 
 

Remark 1. Assumption 2 implies 2 1 1 12 1[ | ]E V V v vs= = . 
 
The proof of the remark is trivial, and thus it is left as an exercise for readers. The 

remark leads to the following conditional expectation, which motivates the two-step 
estimation “Heckit”. Let 1 2( , )X X X¢ ¢ ¢=   

 

2 1 2 12 1[ | , 0] ( )E Y X Y X Xs l* ¢ ¢> = +d b   (5) 
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where ( ) ( ) / ( )t t tl fº F , and ( )F ×  and ( )f ×  are the standard normal 
distribution function and density function, respectively. It follows from (5) that 

 

2 2 12 1( )i i i iY X Xs l h¢ ¢= + +d b   (6) 

 
where 1( | , 1) 0i i iE X Yh = = . Suppose that the parameter of our interest is d . 
Then, the two-step estimation can be applied to obtain a consistent estimator of 

12( , )g s¢ ¢º d . In the first stage, ˆ
probitb  can be obtained by using a probit ML 

estimation. In the second stage, 12,
ˆˆ ˆ( , )Heckit Heckitg s¢ ¢= d  can be obtained by the LS 

estimation of 2iY  on 2iX  and 1
ˆ( )i probitXl ¢ b . The standard error for ĝ  should 

be corrected since it depends on the first stage estimator ˆ
probitb . For the corrected 

asymptotic normality of the Heckit estimator, see Heckman (1979). 
 
2.2. Ali-Mikhail-Haq (AMH) Copula ML Estimation 

 
The well-known Sklar’s theorem (1959) states that there is a unique copula 

( , )C × ×  such that 
 

1 2 1 21 2 1 2( , ) ( ( ), ( ))V V V VF v v C F v F v= ,  (7) 

 
where 

1 2
( , )V VF × ×  is the joint distribution function of the random vector 1 2( , )V V , 

while 
1
( )VF ×  and 

2
( )VF ×  are strictly increasing marginal distribution functions of 

continuous random variables 1V  and 2V .3 Thus, (7) can be defined as 
 

1 2 1 2

1 1
1 2 1 2( ( ), ( )) ( , )V V V VF F u F u C u u- - = , (8) 

 
where 

11 1( )Vu F v=  and 
22 2( )Vu F v=  since 

11 1( )VU F V=  and 
22 2( )VU F V=  are 

uniformly distributed on [0, 1]. 
In general, copula 1 2( , )C u u  is parameterized to be 1 2( , ; )C u u a  where the 

copula parameter a  can be a scalar or vector.4 Once a specific copula is chosen, 
some parametric distributional assumptions can be imposed on the marginal 
distributions 1V  and 2V  to implement the copula ML estimation method. Then, 
the usual parametric ML estimation method can be applied. The likelihood 
function is 

 

____________________ 
3 For details of Sklar’s theorem, see subsection 2.3 in Nelsen (2006). 
4 In this paper a  is a scalar. 
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where 

11 1( )i V iu F x¢= - b , 
22 2 2( )i V i iu F y x¢= - d , and 1 2( , ; )C u u a  is a copula which 

is involved with two marginal distributions 
1VF  and 

2VF . Hence, 1 2( , ; )i iC u u a =  

1 2 1 2 2( , )V V i i iF x y x¢ ¢- -b d . Note that 
1 2

0 1 2 1( , )
Y Y

f y y dy* *
¥ * *ò  denotes the likelihood of the 

event 1 2 2{ 0, }Y Y y* > = .5 The last equation in (9) follows from the following lemma. 
 
Lemma 1. 

1 1 2 2 21 2 2 1 2 2 1( , ) ( )[1 ( ; )]x V V V uf v y x dv f y x C u a¥
¢- ¢ ¢ò - = - -b d d  where 1u =

1 1( )VF v , 
22 2 2( )Vu F y x¢= - d , and 1 2

2 2

( , ; )
1 2( , ; ) C u u

u uC u u aa ¶
¶º . 

 
The proof of Lemma 1 is provided in the Appendix. In this paper, we propose to 

use the AMH copula since it is easy to handle. Moreover, as Kumar (2010) 
mentioned, the AMH copula is the only one among 22 Archimedean copulas in 
Nelsen (2006) whose parameter lies on a closed interval [ 1,1]-  and measures both, 
positive and negative, dependence.6 The AMH copula is considered here as one 
exemplary case for the selection model since there are too many copulas to choose 
from. It does not mean that AMH copula is the best choice either. AMH copula ML 
is just one promising example. Readers may consider using other copulas for the 
selection model depending on the knowledge of the dependence structure. But, 
those issues are not crucial here since the purpose of this paper is to see the 
performance of AMH copula ML method for the selection model compared to the 
two well-known models depending on whether the specification chosen by a 
researcher is correct or not. 

Ali, Mikhail and Haq (1978) proposed searching for bivariate distributions, 
whose survival odds ratios satisfying 

 
1 ( , ) 1 ( ) 1 ( ) 1 ( ) 1 ( )

(1 )
( , ) ( ) ( ) ( ) ( )

XY X Y X Y

XY X Y X Y

F x y F x F y F x F y

F x y F x F y F x F y
a- - - - -

= + + - ×
  

 
for some constant [ 1,1]a Î - . Therefore, the AMH copula is defined as follows. 

 

____________________ 
5 As one referee commented, its probability is zero. Hence, the terminology “likelihood” is more 

appropriate here than the probability. 
6 Smith (2003) also considered AMH copula. 
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1 2
1 2

1 2

( , ; )
1 (1 )(1 )

u u
C u u

u u
a

a
=

- - -
 for [ 1,1]a Î - .  (10) 

 
There are some remarks worth noting regarding AMH copula. First of all, 

consider the derivative of the AMH copula with respect to 2u . 
 

2

1 2 1 1
1 2 2

2 1 2

( , ; ) [1 (1 )]
( , ; )

[1 (1 )(1 )]u
C u u u u

C u u
u u u

a aa
a

¶ - -
º =

¶ - - -
.   (11) 

 
The derivative (11) is used to construct the likelihood function (9). Another 
important fact is that (11) is the conditional distribution of 1U  given 2 2U u=  as 
shown in the proof of Lemma 1. The conditional distribution can be used to obtain 
a random drawing from the copula in the experiments in section 3.7 The parameter 
a  reflects the dependence between 1U  and 2U . If 0a = , then 1U  and 2U  
are independent. Hence, so are 1V  and 2V . The last remark about the AMH 
copula is that it is an Archimedean copula. Archimedean copulas are a particular 
family of copulas satisfying the following condition: 

 
[ 1]

1 2 1 2( , ) ( ( ) ( ))C u u u uj j j-= +   

 
where j  is a generator function, and [ 1]j -  is a pseudo-inverse function.8 Since 
AMH copula’s generator function is strict, [ 1] 1( ) ( )t tj j- -=  for any [0,1]tÎ .9 One 
well-known feature of an Archimedean copula is that the Kendall’s rank correlation 
can be calculated directly from the generator function.10 
 

Kendall’s rank correlation
1

0

( )
1 4

( )
s

ds
s

j
j

= +
¢ò .  (12) 

 
For the detailed features of AMH copula as a member of Archimedean copula, see 
Kumar (2006). 

For the AMH copula ML, we need to make some parametric distributional 
assumptions for the marginals 

1VF  and 
2VF . Let 1 (0,1)V : N  and 2V :

2(0, )sN . That is 
1
( ) ( )Vf v vf=  and 

2

1
2 2( ) (( ) / )Vf v y xs f s- ¢= - d . Therefore, 

1 1( )u x¢= F - b  and 2 2 2(( ) / )u y x s¢= F - d . Then, the likelihood function (9) is 

____________________ 
7 The method is called the “inverse conditional distribution method”. For details, see pages 40-41 in 

Nelsen (2006). 
8 The generator function j  should be a continuous, strictly decreasing function from [0,1]  to 

[0, ]¥  with (1) 0j = . For the definition of pseudo-inverse, see Definition 4.1.1. in Nelsen (2006). 
9 AMH copula’s generator function is ( ) ln((1 (1 )) / )t t tj a= - - . 
10 See Genest and MacKay (1986) and Nelsen (2006). 
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where 1 1( )i iu x¢= F - b , 2 2 2(( ) / )i i iu y x s¢= F - d  and ( , , , )s a¢ ¢ ¢=q b d . Hence, 
the log likelihood function is 

 

1 1 1 2 2
1

log ( ) {(1 )log ( ) (log[ (( ) / )] log )
n

i i i i
i

L y x y y xf s s
=

¢ ¢= - F - + - -åq b d   

1 1
1 2

1 2

[1 (1 )]
log 1

[1 (1 )(1 )]
i i

i
i i

u u
y

u u

a
a

üæ ö- - ï+ -ç ÷ý
- - - ïè øþ

  (13) 

where 1 1( )i iu x¢= F - b , 2 2 2(( ) / )i i iu y x s¢= F - d  and ( , , , )s a¢ ¢ ¢=q b d  (14) 

 
Recall that we need to restrict the copula parameter a  to be in [ 1,1]- . To do that, 
we consider using the one-to-one bounded transformation 2 arctan ( )apa º  in the 
simplex method by Nelder and Mead (1965).11 Recall 1 1a- £ £  for any aÎR . 
Hence, searching in terms of a  via a  makes the estimation more convenient. 
Therefore, the AMH copula maximum likelihood estimator ˆ

CMLq  is 
 

ˆ arg max log ( )CML L=
q

q q  which is defined in (13). 

 
Under ML regularity conditions including correct distributional assumption, AMH 
CML estimator is consistent and asymptotically normal.12 Hence, it is easily 
obtained that 0,

ˆ( ) (0, )d
CML CML CMLn V- ¾¾®Nq q  where 1 0 ,( )

[ CML

CMLV E
¶

¶= l q
q

1 0 ,( ) 1]CML¶ -
¢¶

l q
q  since ˆ

CMLq  is the usual ML estimator of the parameter vector 

0, 0 0 0 0( , , , )CML d s a¢ ¢ ¢=q b .13 
 
 

III. The Performance of the AMH CML Estimator 
 
In this section the performance of the proposed method is compared with the 

other two well-known parametric estimation methods addressed in the previous 

____________________ 
11 Throughout our experiments, we found that in practice the simplex method worked better than 

the usual derivative methods such as the Gauss-Newton procedure in that it had a much higher 
success rate of finding the estimator than the derivative search throughout the Monte Carlo 
experiments. It was more apparent under misspecification. 

12 The consistency of usual M-estimators can be applied. 
13 Derivatives of ( ) log ( )i ifºl q q  w.r.t. q  are provided in the Appendix for readers who may be 

interested in them. 
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section. Since the analytical comparison of their asymptotic variances can not be 
determined in general, we conduct some numerical simulations to find the 
usefulness of the AMH copula maximum likelihood (CML) method even though it 
may be limited.14 See the Appendix for the limitation of the asymptotic variance 
comparison. Hence, Monte Carlo experiments are conducted to find the validity of 
the proposed AMH CML method relative to the two well-known methods for the 
sample selection model. 

Suppose that we are interested in the parameter d  in the outcome equation. 
We compare the performance of the proposed AHM CML method and the two 
well-known methods BN ML and Heckit by comparing the mean squared error 
(MSE) of the estimation results from 1000 independent replications. Two 
environments are considered for Monte Carlo experiments. One is the case where 
some of the three models (AMH CML, BN ML, Heckit) are correctly specified, and 
the other is the case where none of them is correct. 

For the former, two cases are considered. The first one is the case where the true 
joint distribution of two errors is the bivariate normal distribution so that BN ML or 
Heckit are correctly specified. The second one is the case where the true joint 
distribution of two errors is the AMH copula distribution and their marginal 
distributions are standard normal. In this case, only the AMH ML model is 
correctly specified. 

For the latter, we consider the following two cases. The first case is that the true 
joint distribution is the Farlie-Gumbel-Morgenstern (FGM) copula and their 
marginal distributions are standard normal. Note that none of the three models is 
correct even though the specification of the marginal distribution is correct. The 
second case is that the true joint distribution is the FGM copula and the marginal 
distribution of each error is standard logistic distribution. Note that none of the 
three models is correct under this true DGP. 

In each case, we consider four situations depending on the strength of the 
correlation among the regressors of the participation and outcome equation. The 
reason to consider the correlation is that there are near multicollinearity problems in 
Heckman’s two-step estimation in the presence of correlation as addressed by 
Nawata (1993) and Nawata and Nagase (1996). 

Throughout all the experiments, suppose that Assumption 1 holds. Specifically, 
the following assumptions are common to all experiments in this section. 

 
(i) 1 1( 0)Y I Y*= ³  where 1 0 1 1 1Y X Vb b* = + + , and 0 0 1( , ) ( 1,1)b b= = -b . 

(ii) 2 2 1( 1)Y Y I Y*= =  where 2 0 1 2 2Y X Vd d* = + +  and 0 0 1( , ) (20,1)d d ¢= =d . 

(iii) 2

2 2

(1 )
1 (1 )

XX t x t

t t

- +

+ -
=  where (0,1)x : N , [0,1]t Î  and x  is independent of 2X . 

____________________ 
14 Similar arguments as to the analytical comparison are pointed out by Smith (2003). 
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(iv) 2 [0,4]X : U  where [0,4]U  denotes the uniform distribution on the interval 
[0,4] . 

 
Note 0t =  implies 1X x= , while 1t =  implies 1 2X X= . Also, note the 
correlation between 1X  and 2X  is 

2 2(1 )

t
t t+ -

 which is between 0 and 1.15 We 
will try 0,0.5,0.9t =  and 1. 

In each experiment with different DGP, the three estimation models are 
considered as follows. 

 
• For BN ML, do (3) where 2( , , , )BN r s¢ ¢ ¢=q b d .  
• For Heckit, do the probit ML to estimate the participation equation, and 

estimate the outcome equation (6). Hence, the related parameter is Heckit =q  

12( , ) ( , , )g d s¢ ¢ ¢ ¢ ¢ ¢=b b . 
• For AMH copula ML, estimate the model in (13)-(14). Assume that a 

researcher chooses the following parametric specifications for the marginal 
distributions: 1 (0,1)V : N  and 2

2 (0, )V s: N . This assumption on the 
margins is needed for the comparison between AMH ML and other two well-
known methods. Here, ( , , , )CML s a¢ ¢ ¢=q b d . 

 
In each experiment, the performance of the AMH copula ML and other two 

well-known methods are examined in terms of the mean squared error (MSE). We 
focus on the common parameter ( , )¢ ¢b d  in the three models. In particular, our 
primary interest lies in the outcome equation parameter d . The MSE of the 
estimator ˆ

kd  is defined as 2ˆ[( ) ]k kE d d- , 0,1k = . Therefore, the MSE from the 
experiment can be estimated as 21

1 ,
ˆ( )R

r k r kR d d=å - , 0,1k = , where ,
ˆ

k rd  is the 
estimator of kd  from the rth replication, and R  is the number of replications. 
The estimation results will be focused on ˆ( )kMSE d , 0,1k = , instead of 

ˆ( )kMSE b  since there is no substantial difference in ˆ( )kMSE b  results of the three 
models.16 

 
3.1. When some of the Three Models are Correctly Specified 

 
3.1.1. Case 1: When the True Joint Distribution is the Bivariate Normal 

Distribution 
In this case, the BN ML and Heckit model are correctly specified, while the 

AMH ML model is not correctly specified. For the experiment, the two error terms 

____________________ 
15 This idea follows from Nawata (1993). 
16 For the readers who may be interested in the participation equation parameter b  and copula 

parameter a , the estimation results of ˆ( )kMSE b  and ˆ( )MSE a  are reported in the Appendix. 
(Tables 5-9.) 
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1 2( , )V V  are randomly drawn from the following bivariate normal distribution. 
 

1

2

0 1 0.5
,

0 0.5 1

V

V

æ öæ ö æ ö æ ö
ç ÷ç ÷ ç ÷ ç ÷ç ÷è ø è øè ø è ø

: N . (15) 

 
For each replication sample, independent 1000 random drawings of 1 2( , )V V  are 

obtained. Hence, 1 2 1 2( , , , ), 1, ,1000i i i iY Y X X i = K , are generated according to the 
procedure (i)-(iv) depending on the value of t . The true DGP of 1 2( , )V V  in (15) 
is unknown to a researcher. The researcher implements the aforementioned three 
methods to estimate the selection model by treating the replication sample as an 
actual sample. 1000 replications are conducted.17 

Table 1 shows the MSE’s of the three models’ estimators when the true joint 
distribution is the bivariate normal distribution. Note that the estimation model can 
be said to be correctly specified only when either the BN ML or Heckit method is 
chosen. If the AMH CML model is chosen, the specification will not be correct. It is 
shown that the BN ML method has the smallest MSE among the three estimators 
in all values of t . This result is expected since the ML estimator achieves the 
Cramer-Rao lower bound when the chosen specification is correct. The smallest 
MSE of the BN ML estimator is achieved irrespective of the value of t , which 
indicates the extent of the dependence between 1X  and 2X . Heckit also has MSE 
as good as the BN ML when there is no linear correlation between 1X  and 2X . 
Its MSE is still less than that of the AMH CML when 0.5t = , but the AMH CML 
estimator’s MSE becomes less than that of the Heckit as the correlation strengthens. 
Such findings are apparent when 0.9t =  or 1t = . That is, the performance of 
the Heckit is not as good as that of the AMH CML in terms of MSE when 1X  and 

2X  are strongly correlated, which is reflected in large variance of the Heckit 
estimators.  

Theoretically, only both BN ML and Heckit estimators are consistent estimators 
under the DGP of this experiment. But, the Heckit estimator seems to suffer from 
the multicollinearity problem when 0.9t =  or 1t =  in spite of the correct 
specification. In particular, it suffers much more when 500n =  as shown in Table 
10 in the Appendix. In that sense, the AMH CML estimation can be a good 
alternative for the Heckit estimation method when regressors are heavily correlated. 

 
 
 
 
 

____________________ 
17 For the readers who may be interested, the results ˆ( )MSE d ’s are provided in the Appendix 

when the sample size is 500. 
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[Table 1] Case 1: Estimation of d  when the true joint distribution is bivariate normal 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE 0.0277 0.0027 0.0226 0.0021 0.0475 0.0049 0.0533 0.0055 
Bias 0.0023 -0.0012 0.0067 -0.0019 0.0330 -0.0101 0.0395 -0.0122 
Variance 0.0277 0.0027 0.0226 0.0021 0.0464 0.0048 0.0518 0.0053 

Heckit 
MSE 0.0289 0.0027 0.0284 0.0024 0.0940 0.0090 0.0997 0.0096 
Bias 0.0002 -0.0012 0.0010 -0.0006 -0.0006 -0.0001 -0.0004 -0.0002 
Variance 0.0289 0.0027 0.0284 0.0024 0.0940 0.0090 0.0997 0.0096 

AMH 
MSE 0.0308 0.0028 0.0338 0.0032 0.0694 0.0070 0.0757 0.0077 
Bias 0.1061 -0.0007 0.1321 -0.0397 0.2005 -0.0634 0.2096 -0.0662 
Variance 0.0196 0.0028 0.0163 0.0016 0.0292 0.0030 0.0318 0.0033 

 
3.1.2. Case 2: When the True Joint Distribution is the AMH Copula 

Distribution with Normal Marginal Distributions 
In this experiment, the true data generating process (DGP) is the AMH copula 

where their marginal distributions are normal distributions. Specifically, suppose 
the true joint distribution of the two error terms 1 2( , )V V  is 

 

1 2

1 2 0
1 2

0 1 2 0

( ) ( / )
( , )

1 (1 ( ))(1 ( / ))V V
v v

F v v
v v

s
a s

F F
=

- -F -F
  (16) 

 
where ( )F ×  is the standard normal distribution function. Set 0 0.7a = , and 

0 1s =  for the experiment. Note that the true marginal distribution of 

1 (0,1)V : N , and that of 2 (0,1)V : N . The random drawing ( 1 2,U U% % ) from the 
AMH copula can be generated by the inverse conditional distribution method in 
Nelsen (2006), which is described in detail in the Appendix. Then, the random 
drawing of the two error terms ( 1 2,V V% % ) can be generated from the joint distribution 
(16) by using the inversion method 1

1 1( )V U-= F% %  and 1
2 2( )V U-= F% % . Independent 

1000 random drawings are generated for each replication sample, and 1000 
replications are conducted for the experiment.18 

In this experiment case, the estimation model is correctly specified only when the 
AMH CML estimation method is chosen.19 Hence, the AMH CML estimator 
would have the smallest MSE, which is confirmed in Table 2. The MSE of the 

____________________ 
18 For the readers who may be interested, the results MSE( d̂ ) are provided in the Appendix when 

the sample size is 500. 
19 If a  is zero, then the joint distribution (16) becomes the bivariate normal joint distribution. 

But, recall that a  is set to be nonzero in this experiment. 
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AMH CML estimator is shown to be the smallest among the three for every t . As 
for the comparison between BN ML and Heckit, the MSE of Heckit is slightly less 
than that of BN ML for 0.5,0.9,1t = . So, in this case the BN ML estimator suffers 
from the misspecification more than the Heckit does. But, the AMH CML shows 
smaller MSE than the Heckit for every t , which is expected since only AMH 
CML estimator is consistent estimators under this case. The AMH CML estimator 
still shows good MSE performance even when 500n =  except for 0t = . See 
Table 11 in the Appendix. 

 
[Table 2] Case 2: Estimation of d  when the true joint distribution is the AMH copula 

with normal margins 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE 0.0335 0.0030 0.0304 0.0026 0.1116 0.0108 0.1158 0.0112 
Bias 0.0609 0.0005 0.0170 -0.0017 0.0709 -0.0206 0.0632 -0.0185 
Variance 0.0298 0.0030 0.0301 0.0026 0.1065 0.0103 0.1118 0.0108 

Heckit 
MSE 0.0334 0.0030 0.0294 0.0025 0.0997 0.0096 0.1050 0.0101 
Bias 0.0650 0.0005 0.0325 -0.0054 0.0926 -0.0272 0.0868 -0.0256 
Variance 0.0292 0.0030 0.0283 0.0025 0.0912 0.0089 0.0974 0.0094 

AMH 
MSE 0.0315 0.0029 0.0263 0.0022 0.0606 0.0059 0.0494 0.0049 
Bias 0.0172 0.0003 0.0222 -0.0063 0.0919 -0.0284 0.0623 -0.0198 
Variance 0.0312 0.0029 0.0258 0.0022 0.0522 0.0051 0.0456 0.0046 

 
3.2. When no Model is Correctly Specified 

 
Recall that the assumptions regarding ( 1 2,X X ) and the parameters are the same 

as those addressed in the beginning of the section 3. Only the data generating 
process on the two errors ( 1 2,V V ) are different in each case. In this subsection, we 
consider two cases where none of the three models is correct. 

 
3.2.1. Case 3: When the True Joint Distribution is Farlie-Gumbel-

Morgenstern (FGM) Copula with Normal Marginal Distributions 
In this experiment, the true data generating process (DGP) is the FGM copula 

where their marginal distributions are standard normal distributions. Specifically, 
the true joint distribution for the two error terms ( 1 2,V V ) is 

 

1 2 1 2 1 2 1 2( , ) ( ) ( )(1 (1 ( ))(1 ( )))V VF v v v v v va= F F + -F -F .  (17) 
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For this experiment, set 0.7a = . Note that 1 2 1 2 1( , ; ) (1 (1 )C u u u u ua a= + -

2(1 ))u-  is a Farlie-Gumbel-Morgenstern(FGM) copula satisfying 1 1a- £ £ . 
The random drawings ( 1 2,U U% % ) from the FGM copula can be obtained via the 

inverse conditional distributional method.20 Given the random drawing ( 1 2,U U% % ), 
let 1

1 1( )V U -= F% %  and 1
2 2( )V U -= F% % . Hence, the ( 1 2,V V% % ) is a random drawing from 

the joint distribution (17). 
By using independently randomly generated ( 1 2,i iV V% % ) from the joint distribution 

(17) and the set-up in (i)-(iv), we can obtain the replication sample for the 
experiment. For each replication, obtain an independent pair ( 1 2,i iV V% % ) given 

1 2( , )i iX X , 1, ,1000i = K . Thus ( 1 2,i iY Y ) are obtained conditional on 1 2( , )i iX X , 
1, ,1000i = K . In each replication, the three estimation methods are implemented. 

1000 replications are independently conducted.21 
Note that any estimation model cannot be said to be correctly specified when the 

estimation method is chosen out of the three. Table 3 shows the results of MSE 
from this experiment. The three estimation methods show similar results when 

0t = . When 0.5t = , the AMH CML method has slightly smaller MSE than the 
other two methods. When 0.9t =  or 1t = , AMH CML shows the smallest MSE 
among the three methods. Hence, AMH CML can be a good alternative method for 
the selection model when the chosen model is misspecified and some correlation 
between covariates of the two equations is strong. 

 
[Table 3] Case 3: Estimation of d  when the true joint distribution is FGM copula with 

normal margins 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE 0.0301 0.0031 0.0302 0.0026 0.0849 0.0083 0.0884 0.0087 
Bias 0.0155 0.0005 0.0013 -0.0015 0.0335 -0.0114 0.0292 -0.0101 
Variance 0.0299 0.0031 0.0302 0.0026 0.0838 0.0082 0.0876 0.0086 

Heckit 
MSE 0.0301 0.0032 0.0299 0.0026 0.0971 0.0093 0.1003 0.0097 
Bias 0.0186 0.0005 0.0036 -0.0020 0.0029 -0.0023 0.0013 -0.0018 
Variance 0.0297 0.0031 0.0299 0.0026 0.0971 0.0093 0.1003 0.0097 

AMH 
MSE 0.0304 0.0031 0.0242 0.0022 0.0397 0.0041 0.0412 0.0043 
Bias -0.0116 0.0003 0.0180 -0.0079 0.0559 -0.0191 0.0578 -0.0197 
Variance 0.0303 0.0031 0.0239 0.0021 0.0366 0.0037 0.0378 0.0039 

 

____________________ 
20 The procedure for random drawings from FGM copula is explained in the Appendix. 
21 For the readers who may be interested, the results ˆ( )MSE d  are provided in the Appendix when 

the sample size is 500. 
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3.2.2. Case 4: When the True Joint Distribution is the FGM with Logistic 
Marginal Distributions 

Suppose the true joint distribution for the two error terms ( 1 2,V V ) is 
 

1 2 1 2 1 2 1 2( , ) ( ) ( )(1 (1 ( ))(1 ( )))V VF v v v v v va= L L + -L -L  (18) 

 
where ( ) 1 / (1 exp( ))v vL = + -  is the standard logistic distribution function. The 
DGP of ( 1 2,U U ) from the FGM copula is the same as in the previous subsection. 
But, the DGP of ( 1 2,V V ) from the joint distribution (18) is different from the joint 
distribution (17) since the marginal distributions are different. 

The random drawing ( 1 2,V V% % ) from (18) can be done as follows. Specifically, 
1

1 1( )V U -= L% %  and 1
2 2( )V U -= L% %  where ( 1 2,U U% % ) is a random drawing from the 

FGM copula. 1000 replications are conducted for the experiment, and 1000 
observations are generated for each replication.22 

Note that no estimation model among the three can be said to be correctly 
specified in this experiment. In particular, both the joint and marginal distributions 
of the two errors are misspecified when choosing one out of the three methods. In 
spite of both misspecifications, Table 4 shows that the AMH CML has the smallest 
MSE among the three estimators for every value of t . Hence, the AMH CML 
estimation method seems to be a good alternative for the selection model when a 
researcher is not sure about the true joint distributions of the errors.23 

It is also noticeable that MSE's of Heckit are very large compared to those of BN 
ML and AMH CML when the correlation among the regressors is high, i.e., 

0.9t =  and 1. When the sample size is 500, the MSE of Heckit becomes higher 
than those from the experiment with 1000n = . 

 
 
 
 
 
 
 
 
 
 

____________________ 
22 For readers who may be interested, the results MSE( d̂ ) are provided in the Appendix when the 

sample size is 500. 
23 Of course, the MSE from AMH CML of this experiment is much higher than that of the 

experiment in 3.1.2 since the latter chooses the correct specification. But, the MSE results in this 
experiment is relatively good compared with the two well-known methods. 
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[Table 4] Case 4: Estimation of d  when the true joint distribution is the FGM with 
logistic marginal distributions 

 

 0t =   0.5t =   0.9t =   1t =   
parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE 0.1302 0.0081 0.1828 0.0107 0.5671 0.0406 0.6275 0.0449 
Bias 0.0220 -0.0011 -0.0470 0.0061 -0.0021 -0.0041 0.0862 -0.0267 
Variance 0.1298 0.0081 0.1806 0.0107 0.5671 0.0406 0.6200 0.0442 

Heckit 
MSE 0.1211 0.0081 0.1491 0.0093 1.4483 0.0956 1.9647 0.1284 
Bias 0.0395 -0.0009 -0.0016 -0.0025 0.0025 -0.0054 -0.0362 0.0037 
Variance 0.1195 0.0081 0.1491 0.0093 1.4483 0.0956 1.9634 0.1284 

AMH 
MSE 0.1146 0.0078 0.0968 0.0058 0.1116 0.0081 0.1076 0.0079 
Bias -0.1824 -0.0008 -0.1952 0.0211 -0.2174 0.0415 -0.2204 0.0425 
Variance 0.0813 0.0078 0.0586 0.0054 0.0644 0.0064 0.0590 0.0061 

 
 

IV. Concluding Remarks 
 
In this paper, the AMH CML estimation method is proposed for the sample 

selection model, and numerically compared with most frequently used two well-
known methods for the selection model.24 Some Monte Carlo experiments were 
conducted to compare the performance of the proposed AMH CML and the two 
well-known methods: BN ML and Heckit. 

The experiment results show that the performance of the BN ML and Heckit 
estimators yield smaller MSE than the AMH CML estimator for 0t =  or 0.5 
when the true joint distribution is the bivariate normal distribution. However, the 
AMH CML estimator’s MSE is less than that of Heckit for 0.9t =  or 1t = , even 
though the true joint distribution is the bivariate normal distribution. The results 
suggest that AMH CML can be a better alternative than Heckit even though Heckit 
is correct specification. 

We find that when the true joint distribution is the AMH copula with normal 
marginal distributions, the AMH CML has the smallest MSE among the three for 
any value of t . These results are expected since the AMH CML is the correctly 
specified model. 

Interesting results are found when the imposed distributional assumption is far 
from the correct joint distribution and some of the regressors of the two equations 
are correlated. The AMH CML estimator has the smallest MSE among the three 

____________________ 
24 The difficulty of analytical comparison of their asymptotic variances and MSE’s are discussed in 

the Appendix. 
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methods for any value of t  when the true joint distribution is the FGM with 
standard logistic marginal distributions (case 4). It also has the smallest MSE except 
for 0t =  when the true joint distribution is the FGM copula with normal 
marginal distributions (case 3). These results suggest that the AMH CML method 
can be a good alternative to estimate the sample selection model in terms of MSE 
when the specification is not correct. The proposed AMH CML method can be very 
useful if considering the fact that many researchers usually do not exactly know 
about the true DGP, and the correlation among the regressors of two equations is 
frequently present in practice. 

Admittedly, the ideal copula ML approach for the sample selection model is to 
approximate the joint distribution by choosing the correct copula with correct 
marginal distributions. In that respect, the approach of this paper has some 
limitations since the proposed method might have different results depending on 
the choice of the copula. But, as seen in Nelsen (2006), there are too many copulas 
to pick in practice. Hence, it is not plausible to choose the correct copula in advance 
to begin the analysis of the selection model. Furthermore, there is still another issue 
with choosing the correct marginal distributions for the two error terms. The best 
solution to these problems is to verify whether the chosen copula and marginal 
distributions are correct after the estimation is implemented. One solution is to 
exploit the idea of the integrated conditional moments as in Bierens and Song 
(2012), and Bierens and Song (2014). This can be accomplished by comparing two 
conditional joint distributions of 1 2 1 2( , )|( , )Y Y X X  and 1 2 1 2( , )|( , )Y Y X X% % , where 

1 2 1 2( , )|( , )Y Y X X  are actual observations from the true conditional joint 
distribution and 1 2 1 2( , )|( , )Y Y X X% %  are simulated observations from the chosen 
copula and marginal distributions. If they are the same, then the chosen copula 
estimator would be the true joint distribution. This topic can be another research 
avenue for the copula approach for the sample selection model. 

In addition, two extensions can be considered. One involves a semi-parametric 
approach for the environment where the distribution of one error term is known, 
but that of the other error term is unknown. The other approach involves taking a 
semi-nonparametric approach for the environment where no distributional 
assumption is imposed on any error term. For the semi-nonparametric approach, 
we need some identification conditions. 25  These two extensions will be the 
directions for future research. 

 
 
 
 

____________________ 
25 In this case, we need to consider nonparametric identification of the marginal distribution of the 

error term in the participation equation. For example, see Manski (1998), and Bierens (2014). 
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Appendix 
 

Proof of Lemma 1 
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follows from the fact given below. 
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( ) /q q¶ ¶l i  when using the Ali-Mikhail-Haq copula 
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where ( ) ( ) / ( )l f× = × F × . 
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since ( ) ( )x x xf f¢ = - . 
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All derivations above are based on the following facts: 
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Random drawing ( 1 2,U U% % ) from AMH copula 

 
Note 1 2

2

( , )
1 1 2 2Pr( | )C u u

u U u U u¶
¶ = £ =  is the conditional distribution which is 

shown in the proof of Lemma 1. Hence, 1 2 2Pr( | )U U u=  follows [0,1]U . 
Moreover, it follows from AMH copula that 

 

1 2 1 1
2

2 1 2

( , ) [1 (1 )]

[1 (1 )(1 )]

C u u u u

u u u

a
a

¶ - -
=

¶ - - -
. 

 

To randomly draw ( 1 2, ;U U a% % ) from a joint distribution 1 2( , , )C u u a =
1 2

1 21 (1 )(1 )
u u
u ua- - - , we can use the following procedure. 

1. Independently randomly draw ( 10 20,u u ) from [0,1]U . 

2. Set 2 20U u=% . 

3. Now find 1U%  satisfying 1 20

2

( , ; )
10

C U u
u ua¶
¶ =
%

, that is, 
2

1
1 10( )uU C u-= %
% . Specifically, 
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numerically find 1 [0,1]U Î%  which satisfies 1 1
2

1 2

[1 (1 )]
10[1 (1 )(1 )]

0U U

U U
ua

a
- -

- - -
- =

% %
% %  given 

10 2, ,u Ua % . 

The numerical procedure such as “fsolve” in Matlab can be used to find 1U% . 

4. Hence, the random drawing ( 1 2,U U% % ) from AMH copula is obtained. 
Note the order of the conditioning to generate random drawings from the joint 
distribution 1 2( , ; )C u u a  does not matter. 

 

Random drawing ( 1 2,U U% % ) from FGM copula 

 
Note FGM copula is 1 2 1 2 1 2( , ; ) (1 (1 )(1 ))C u u u u u ua a= + - - . 

1. Independently randomly generate ( 10 20,u u ) from [0,1]U . 

2. Set 2 20U u=% . 

3. Obtain 
2

1
1 10( )uU C u-= %
%  satisfying 1 2

2 2

( , )
10 1( ) C U U

u uu C U ¶
¶= =
% %

%
% . That is, find 

1 [0,1]u Î%  which satisfies 1 1 2 10(1 (1 )(1 2 )) 0U U U ua+ - - - =% % %  given 10 2, ,u Ua % . 

Hence, 
 

2
2 1 2 1 10(1 2 ) (1 (1 2 )) 0U U U U ua a- - + - + =% % % % . (24) 

2
2 2 2 10

1
2

(1 (1 2 )) (1 (1 2 )) 4 (1 2 )

2 (1 2 )

U U U u
U

U

a a a
a

+ - - + - - -
=

-

% % %
%

% .  

 
Note that we can have explicit random drawings for FGM copula if you have 
any independent random drawings ( 10 20,u u ) from [0,1]U . 

 
4. Hence, the random drawing ( 1 2,U U% % ) from FGM copula is 

 

2 20U u=% , and 
2

20 20 20 10
1

20

(1 (1 2 )) (1 (1 2 )) 4 (1 2 )

2 (1 2 )

u u u u
U

u

a a a
a

+ - - + - - -
=

-
% . 

 
Note that we do not need to solve (24) numerically in FGM copula unlike AMH 

copula. 
 

Comparison of the asymptotic variances of BN ML and AMH CML 
estimators 

 
For example, consider the comparison of BN ML estimator and AMH CML 

estimator. Recall that the consistency requires that the distributional assumption 
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chosen by a researcher should be true. Otherwise, the estimator cannot be consistent. 
Considering the possible inconsistency from the incorrect specification, the 
asymptotic normality of ˆ

BNq  can be written as follow. 
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where BN
*q  is a pseudo-true parameter which is the sum of the true parameter 

0,BNq  and a possible bias. 1 1 1
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where 2( , , , )r s¢ ¢ ¢=q b d . 

 
Similarly, the same arguments apply to the AMH CML estimator. 
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where 1 1( )i iu x¢= F - b , 2 2 2(( ) / )i i iu y x s¢= F - d  and  ( , , , )s a¢ ¢ ¢=q b d . 

 
In general, we cannot determine whether the block of ( ,b d ) in CMLV *  minus 

the same block in BNV *  is positive semi-definite or negative semi-definite. For the 
comparison of the MSE, we also need to consider the bias 0

* -q q , which makes 
the comparison be indeterminate in general. 

By using the inverse of the partitioned matrices and 0,BN BN
* =q q , we can obtain 

the asymptotic variance of 0
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where 0, 0 0 0 0,2( , , , )BN r s¢ ¢ ¢=q b d . 

The similar results can be obtained for the AMH CML estimator. 
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where 
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where ( , , , )s a¢ ¢ ¢=q b d  and 0, 0 0 0 0( , , , )CML s a¢ ¢ ¢=q b d . 

Even in a hypothetical situations where both specifications are correct, we cannot 
determine in general whether ( , ), ( , ),CML BNV V-b d b d  is positive semi-definite or 
negative semi-definite. 

 
Estimation results of b  in the three models 

 
[Table 5] (Case 1) Estimation of b  when the true joint distribution is a bivariate normal 

distribution 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0b   1b   0b  1b  0b  1b  0b  1b  

BN ML 
MSE 0.0038 0.0046 0.0075 0.0034 0.0099 0.0041 0.0102 0.0043 

Heckit 
MSE 0.0038 0.0046 0.0075 0.0034 0.0100 0.0041 0.0102 0.0042 

AMH 
MSE 0.0039 0.0005 0.0076 0.0035 0.0101 0.0042 0.0102 0.0043 
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[Table 6] (Case 2) Estimation of b  when the true joint distribution is the AMH copula 
distribution 

 

 0t =   0.5t =   0.9t =   1t =   
parameter 0b   1b   0b  1b  0b  1b  0b  1b  

BN ML 
MSE 0.0033 0.0051 0.0072 0.0036 0.0101 0.0041 0.0098 0.0041 

Heckit 
MSE 0.0033 0.0051 0.0072 0.0036 0.0102 0.0041 0.0097 0.0040 

AMH 
MSE 0.0033 0.0052 0.0071 0.0036 0.0103 0.0042 0.0097 0.0040 

 
[Table 7] (Case 3) Estimation of b  when the true joint distribution is FGM copula with 

normal marginal distributions 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0b   1b   0b  1b  0b  1b  0b  1b  

BN ML 
MSE 0.0033 0.0049 0.0075 0.0037 0.0097 0.0041 0.0099 0.0041 

Heckit 
MSE 0.0033 0.0049 0.0075 0.0037 0.0097 0.0040 0.0098 0.0040 

AMH 
MSE 0.0033 0.0050 0.0075 0.0037 0.0097 0.0041 0.0098 0.0040 

 
[Table 8] (Case 4) Estimation of b  when the true joint distribution is the FGM copula 

with logistic marginal distributions 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0b   1b   0b  1b  0b  1b  0b  1b  

BN ML 
MSE 0.1646 0.1716 0.1661 0.1601 0.1744 0.1691 0.1751 0.1695 

Heckit 
MSE 0.1644 0.1708 0.1646 0.1590 0.1740 0.1685 0.1750 0.1691 

AMH 
MSE 0.1640 0.1713 0.1668 0.1619 0.1763 0.1713 0.1772 0.1718 
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Estimation results of a  in AMH CML 
 

[Table 9] Estimation of a  in AMH copula ML 
 

 0t =  0.5t =  0t =  0.5t =  
Case 1 

MSE 0.0611 0.0446 0.0881 0.1036 
Bias 0.2172 0.1626 0.0184 -0.0018 
Variance 0.0140 0.0182 0.0878 0.1036 

Case 2 
MSE 0.1133 0.1535 0.3093 0.2268 
Bias -0.0794 -0.3386 -0.4360 -0.1694 
Variance 0.1070 0.0389 0.1192 0.1981 

Case 3 
MSE 0.0999 0.0987 0.2206 0.2200 
Bias -0.0969 -0.1568 -0.2567 -0.2607 
Variance 0.0905 0.0741 0.1547 0.1520 

Case 4 
MSE 0.0930 0.0541 0.0575 0.0491 
Bias 0.0752 0.0799 0.0802 0.0863 
Variance 0.0874 0.0477 0.0511 0.0417 

 
Estimation results of d  when 500n =   

 
[Table 10] (Case 1: 500n = ) Estimation of d  when the true joint distribution is 

bivariate normal 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE( 500n = ) 0.0573 0.0053 0.0521 0.0046 0.1013 0.0101 0.1019 0.0102 

Heckit 
MSE( 500n = ) 0.0583 0.0053 0.0651 0.0053 0.1832 0.0173 0.1927 0.0183 

AMH 
MSE( 500n = ) 0.0549 0.0055 0.0554 0.0050 0.0954 0.0095 0.0974 0.0098 
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[Table 11] (Case 2: 500n = ) Estimation of d  when the true joint distribution is the 
AMH copula with normal margins 

 
 0t =   0.5t =   0.9t =   1t =   

parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE( 500n = ) 0.0571 0.0057 0.0652 0.0054 0.1935 0.0185 0.1855 0.0178 

Heckit 
MSE( 500n = ) 0.0559 0.0058 0.0628 0.0053 0.2054 0.0195 0.2111 0.0201 

AMH 
MSE( 500n = ) 0.0540 0.0058 0.0545 0.0046 0.0661 0.0069 0.0676 0.0071 

 
[Table 12] (Case 3: 500n = ) Estimation of d  when the true joint distribution is FGM 

copula with normal margins 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE( 500n = ) 0.0600 0.0061 0.0625 0.0053 0.1558 0.0151 0.1570 0.0153 

Heckit 
MSE( 500n = ) 0.0590 0.0061 0.0613 0.0052 0.2027 0.0192 0.2058 0.0196 

AMH 
MSE( 500n = ) 0.0526 0.0062 0.0475 0.0043 0.0607 0.0065 0.0629 0.0068 

 
[Table 13] (Case 4: 500n = ) Estimation of d  when the true joint distribution is the 

FGM copula with logistic marginal distributions 
 

 0t =   0.5t =   0.9t =   1t =   
parameter 0d   1d   0d  1d  0d  1d  0d  1d  

BN ML 
MSE( 500n = ) 0.2776 0.0157 0.3678 0.0218 0.7829 0.0576 0.7712 0.0570 

Heckit 
MSE( 500n = ) 0.2430 0.0158 0.3081 0.0190 3.2285 0.2102 4.2885 0.2762 

AMH 
MSE( 500n = ) 0.1809 0.0152 0.1686 0.0123 0.1667 0.0145 0.1582 0.0136 
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