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comparison of the deviance information criterion for various stochastic volatility models 
reveals a good fit of the proposed model for the data. 
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8 
I. Introduction 

 
The relationship between returns and volatility in equity markets is well known 

to be asymmetric. That is, negative returns are associated with higher volatility than 
positive returns. In the literature of autoregressive conditional heteroskedasticity 
(ARCH)-type volatility models, various models have been proposed to 
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accommodate this stylized fact. These studies include Engle and Ng (1993), 
Glosten et al. (1993), Nelson (1991), and Pagan and Schwert (1990). Moreover, the 
research of stochastic volatility (SV) models has actively addressed an asymmetric 
relationship between returns and volatility. The SV models specify volatility as a 
separate random process and can have advantages over the ARCH-type models for 
modeling the dynamics of return series (Kim et al., 1998). Poon and Granger (2003) 
reported that SV models generally outperform ARCH-type models in out-of-sample 
volatility forecasting. Given the rapid development in the estimation methods of SV 
models, these models recently become more popular than they used to be. 

In the SV model framework, one common approach to accommodate the 
asymmetric relationship between returns and volatility is to adopt a correlation 
coefficient between two innovations in lagged return and volatility process (Harvey 
and Shephard, 1996; Yu, 2005). If the correlation is negative, then a negative lagged 
return will be associated with high subsequent volatility. This asymmetry based on 
the correlation coefficient is typically referred to as the leverage effect in the 
stochastic volatility literature. The other approach to explain asymmetric 
relationship between returns and volatility is adopting the threshold effect 
considered by So et al. (2002), who defined two regimes based on the sign of stock 
returns and let the parameters in the SV model have different values in each regime. 
Studies have attempted to accommodate the threshold and leverage effects in the SV 
model (Smith, 2009; Wu and Zhou, 20141; Xu, 2010). 

The leverage effect was assumed to be constant. However, recent studies have 
found evidence against a constant parameter for the leverage effect. Empirical data 
have shown that the leverage parameter characterizing the correlation between 
innovations to return and innovations to variance vary with time. Daouk and Ng 
(2011) reported evidence of strong leverage effect when prices decrease. Christensen 
et al. (2015) used the daily US stock index return series from 1926 to 2010, and 
found a negative leverage effect throughout but a significant increase in magnitude 
during financial crises. Moreover, nonparametric or semiparametric modeling for 
time-varying leverage effect has been extensively studied. These studies include Ait-
Sahalia et al. (2013), Bandi and Reno (2012), Linton et al. (2016), Wang and 
Mykland (2014), and Yu (2012). 

The current study focused on the idea that the relationship between returns and 
volatility depends on the magnitude and sign of the former. One important 
common feature of the majority of existing SV models is that the relationship 
between returns and volatility is determined only by the sign of the former, 
regardless of its magnitude. For example, the moderate and large negative returns in 
____________________ 

1 Wu and Zhou (2014) designated their model a triple-threshold leverage SV model, not because 
they actually consider three different regimes in the model but they allow the state dependent leverage 
effects (i.e., two regime-specific correlation coefficients). Moreover, each regime is still determined by 
only the signs of returns. 
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the majority of prior studies have the same relationship with volatility. However, 
this result is not realistic and the natural expectation is that investors behave 
differently when stock prices drop (or rise) below (or above) a certain level. 
Consequently, the relationship between returns and volatility would be different. 
We propose a new stochastic volatility model, in which the sign and magnitude of 
returns play roles in explaining a considerably detailed relationship between returns 
and volatility. In particular, we accommodate three regimes in the model (i.e., large 
negative return; mid-range, including moderate negative and positive returns; and 
large positive return) to better capture the time-varying aspect of the leverage effect 
instead of the usual two regimes depending only on the sign. We let the parameter 
for the leverage effect have a different value for each regime, expecting that the 
behavior of investors would be different in each regime. 

We applied our model on two stock return series from 3 January 2006 to 30 June 
2015: the return series of the S&P 500 Index and the stock return of Microsoft 
Corporation (MSFT). We utilized the Markov chain Monte Carlo (MCMC) 
method to implement a practical Bayesian estimation approach for our model. Chib 
and Greenberg (1995) and Chib et al. (2002) provided extensive reviews on the 
method. This method has been successfully applied to estimate basic and extended 
stochastic volatility models (e.g., Jacquier et al., 1994; Kim et al., 1998; Chib et al., 
2002). The MCMC method is a simulation technique that generates a sample from 
the target distribution. The simulation is conducted by specifying the transition 
density of an irreducible aperiodic Markov chain, the limiting invariant distribution 
of which is the target posterior distribution. Thereafter, the Markov chain is iterated 
numerous times in a computer-generated Monte Carlo simulation, and the draws 
generated from the simulation can be used to summarize the posterior distribution. 

We present evidence that the relationship between returns and volatility depends 
on the magnitude and sign of the former. In the S&P 500 Index and MSFT cases, 
the estimated leverage effect differed in each of the three regimes. First, when the 
stock prices in both cases cross a certain threshold, the leverage effect becomes 
substantially stronger where the leverage effect of the index is generally stronger 
than that of MSFT. Second, although the conventional leverage effect appeared for 
the index in regime 1 (with generally negative returns), the relationship between 
stock returns and volatility was estimated to be positive for MSFT. Such a reverse 
leverage effect also appeared in the model of Yu (2012) when stock returns are 
negative. Third, when stock return was moderately negative or positive (regime 2), 
the conventional leverage effect appeared in the index and individual firm’s stock. 
Lastly, a comparison of the deviance information criterion for various SV models 
showed that our model fit the data the best compared with various existing SV 
models. 

The remainder of this paper is organized as follows. Section 2 introduces the 
model and explains the estimation method. Sections 3 provides the main results. 
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Section 4 concludes this research. The Appendix contains the tables and figures. 
 
 

II. Proposed Model and Estimation Method 
 

2.1. Proposed Model 
 
We denote tr  as a demeaned stock return series and let q  be the vector of 

unknown parameters that will be specified in the next subsection. We define a 
sequence of random variables j

ts  as follows: 
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where 1t  and 2t  are the threshold levels that satisfy 1 2t t< . We let ts =

1 2 3( , , )t t ts s s ¢  for 1, ,t n= K . The triple regime stochastic volatility (TRSV) model 
with threshold and leverage effects is defined as follows: 
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1 2 3ts t t ts s sr r r r= + + . 

 



Heejoon Han ∙ Eunhee Lee: Triple Regime Stochastic Volatility Model with Threshold and Leverage 485

Therefore, we may rewrite 
 

1 1 1 1log (log )t t th hm b m e+ - = - + , 1 1( , )t tcor u v r+ =  if 1tr t<   

1 2 2 2log (log )t t th hm b m e+ - = - + , 1 2( , )t tcor u v r+ =  if 1 2trt t£ <  

1 3 3 3log (log )t t th hm b m e+ - = - + , 1 3( , )t tcor u v r+ =  if 2tr t³  

 
Our TRSV model is a triple-regime model, in which each regime is determined 

by return. Note that the sign and magnitude of the returns determine the regime in 
the model. When the return is negative with a large magnitude, it belongs to regime 
1. When the return is moderately negative or positive, it is in regime 2. When the 
return is positive with a large magnitude, it belongs to regime 3. In each regime, the 
leverage effect represented by the correlation coefficient 

ts
r  takes a different value. 

This model also allows for the threshold effect, which means that 
ts

m  and 
ts

b  
have different values in each regime. 

Our reason for introducing a triple-regime model rather than the traditional two-
regime models is that the empirical results of the relationship between volatility and 
returns for the periods of large negative return or financial crisis has been found to 
be mixed. Christensen et al. (2015) found that the risk–return tradeoff is 
significantly positive only during financial crises but insignificant during non-crisis 
periods. This result can be explained by the fact that a given increase in the 
debt/equity ratio leads to increased risk during crisis. Furthermore, an increase in 
risk increases the discount rate more during financial crisis than during normal 
periods following the volatility feedback interpretation. Christensen et al. (2015) 
used the daily US stock index return series from 1926 to 2010 and found that the 
magnitude of leverage effect changes drastically during financial crises. The current 
study shows that time-variant leverage effect can be substantially explained by our 
triple-regime model. The reason is that the strength of the leverage effect can be 
drastically changing for the periods of generally negative lagged return or financial 
crisis period. 

Our model is related with recent studies on nonparametric or semiparametric 
modeling for time-varying leverage effect (Ait-Sahalia et al., 2013; Bandi and Reno, 
2012; Linton et al., 2016; Wang and Mykland, 2014; Yu, 2012). Yu (2012) and 
Bandi and Reno (2012) obtained strong evidence for time-varying aspects for 
asymmetric relationships between lagged return and volatility. Linton et al. (2016) 
suggested a method of testing the leverage hypothesis nonparametrically using the 
concept of first order distributional dominance. They found that investors consider 
the level of volatility and the entire conditional distribution of volatility. Bandi and 
Reno (2012) and Patton and Sheppard (2015) considered the current volatility level 
as the main driving force or strength of the time-varying leverage effect. By contrast, 
Yu (2012) assumed that the driving factor for time-varying leverage was the lagged 
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return. 
Yu (2012) proposed a SV model that can allow for multiple regimes. He also 

considered a three-regime model even if his empirical applications support two-
regime models instead of three-regime models. However, our model is different 
from his model in two main aspects. First, we estimate it  in our model, whereas it 
is predetermined in Yu (2012). In his three-regime model, 1t  and 2t  are chosen 
to enable each regime to have a nearly equal split of observations (34.5%, 31%, and 
34.5% of returns). However, investors’ behaviors would expectedly be different if 
stock prices dropped (or rose) below (or above) a certain level. Moreover, estimating 

1t  and 2t  would be considerably desirable to accommodate the effects of such a 
behavior in the model. Second, we allow for the threshold effect in the volatility 
level parameter 

ts
m  and volatility persistence parameter 

ts
b  but it is not allowed 

in Yu’s model. 
Danielsson (1994) and Asai and McAleer (2006) considered SV models that 

incorporate the sign and magnitude of return. However, their models are based on 
an EGARCH type representation and do not focus on the correlation coefficient 
between two innovations. Therefore, their models do not provide the detailed 
features of the leverage effect that depend on the sign and magnitude of a return 
series as our model does. 

 
2.2. Bayesian Estimation Method 

 
Estimating SV-type models is considerably challenging because these models 

lack closed form likelihood functions owing to their latent structure of the 
conditional variance. Therefore, maximum likelihood estimation cannot be directly 
used. Several estimation methods have been proposed in the literature, including 
quasi-maximum likelihood method (QML) (Harvey et al., 1994), simulated 
maximum likelihood method (Danielsson, 1994; Durbin and Koopman, 1997; 
Sandmann and Koopman, 1998), efficient method of moments (Gallant and 
Tauchen, 1996; Andersen et al., 1999), simulated method of moments (Duffie and 
Singleton, 1993), and generalized method of moments (GMM; Melino and 
Turnbull, 1990; Andersen and Sørensen, 1996; Sørensen, 2000). Apart from these 
methods, the Bayesian Markov chain Monte Carlo (MCMC) method has been used 
to estimate the parameters of the SV models. Compared with other estimation 
methods, the Bayesian method is explicitly suitable and has been proven to perform 
well and provide relatively accurate results (e.g., Jacquier et al., 1994; Andersen et al., 
1999). Andersen et al. (1999) showed that MCMC is one of the most efficient 
methods. The first Bayesian approach was provided by Jacquier et al. (1994), in 
which the posterior distribution of the unknown parameters was sampled by the 
MCMC method. The aforementioned study also showed that in the SV framework, 
the MCMC method is superior to QML and GMM. Kim et al. (1998) and Chib et 
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al. (2002) developed an alternative and markedly efficient MCMC algorithm for SV 
models. 

Therefore, the current study uses the Bayesian approach to estimate our model. 
We define the vector of the observed samples 1 2( , , , )nR r r r ¢= L  with n  sample 
size. We let 2

1( , , , , , )hq m b s r t ¢=  be the vector of the unknown parameters with 

1 2( , ,m m m= 3 )m , 1 2 3( , , )b b b b= , 1 2 3( , , )r r r r= , 1 2( , )t t t= , and 

1 2( , , , )nH h h h ¢= L ; and S = 1 2( , , , )ns s s ¢L  be the vectors of the latent variables. 
We followed Yu (2005) in rewriting our model as follows: 

 
2

1log |log , , ( (log ), )
t t tt t t s s t sh h s N hq m b m s+ + -:   

2
1 1|log ,log , , (log (log )), (1 )s

t t t t

s
t t t t t t s s t s t sr h h s N h h h h

r
q m b m r

s+ +

æ ö
- - - -ç ÷

è ø
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Using Bayes’ theorem, we can construct the joint posterior distribution of the 
unobservables given the data in terms of the prior distribution ( )p q . Moreover, the 
likelihood function is as follows: 
 

( , | ) ( , | ) ( )p H R p R H pq q qµ ,  (1) 

 
where 
 

1

1 1
1

( , | ) (log | ) ( , log |log , , ) ( |log , )
n

t t t t n n
t

p R H p h p r h h s p r hq q q q
-

+
=

µ Õ  

1

1 1 1
1
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2
1 2 3 1 2 3 1 2 3 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (log )p p p p p p p p p p p p p p hq m m m b b b s r r r t t= . 

 
We follow the literature for the prior distribution of q . That is, all variables of 

q  are assumed to be independent. For parameters b  and 2s , we precisely 
follow the prior specification of Kim et al. (1998); 2s : Inverse - Gamma (2.5, 
0.025), which has a mean of 0.167 and standard deviation of 0.024. For b , Kim et 
al. (1998) specified a beta distribution with parameters 20 and 1.5, thereby implying 
a mean of 0.86 and standard deviation of 0.11. For parameter m , we take a slightly 
informative prior, such as ( 10,4)j Nm -:  for all j . The correlation parameter 

jr  for all j  is assumed to be uniformly distributed with support between 1-  
and 1, and is completely flat. Therefore, the prior distributions with different 
regimes are not informative. For the threshold level parameters t , we assume that 
the threshold has a uniform prior for the first iteration, 1 2[ , ]i iU t t  for it  to 
ensure that each regime has sufficient observations, in which the lower and upper 
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bounds correspond to selected quantiles of tr . We suggest that each regime must 
contain at least 10% of the samples and t  is constrained to satisfy 1 2t t< . We 
also impose 1 mt t<  and 2 mt t> , where mt  denotes the median of the samples. 
That is, the support for 1( )p t  is 1[ , ]mt t  and that for 2( )p t  is 2[ , ]mt t , where 

1t  and 2t  are 10% and 90% quantile, respectively.2 We use normal priors with 
posterior mean from the first iteration to accelerate the convergence. 

For the usual Bayesian procedure, we implemented an MCMC method to 
sample the latent variables and unknown parameters from the joint posterior 
density ( , | )p H Rq  in (1). The MCMC algorithm repeatedly samples from the 
posterior distributions, thereby generating a Markov chain over ( , )Hq , and 
eventually converging to the equilibrium/stationary posterior distribution 

( , | )p H Rq . For our MCMC procedure, we used the Gibbs sampler and 
Metropolis–Hastigns (MH) algorithm within the Gibbs sampler. These methods 
have had an extensive influence on the theory and practice of Bayesian inference. 
Chib and Greenberg (1995) provided a detailed account of the MH algorithm. 

Let ( , , )H Sw q=  and 
thw-  denotes w  excluding th . The Gibbs sampler, 

which is used to generate a Markov chain with stationary distribution as the joint 
posterior distribution (1), works as follows in the first step. Given the initialization 

0 0( , )Hq , we draw from each of the following distributions: 
1. (a) Sample 1h  from 

11 1 1 2 1 1 1(log | , ) ( , log |log , , ) (log )hp h r p r h h s p hw q- µ .3 
(b) Sample th from 1 1 1(log | , ) ( , log |log , , ) ( , log |log ,

tt h t t t t t t tp h R p r h h s p r h hw q- + - -µ

1, )tsq -  for 2, , 1t n= -K , 
(c) Sample nh  from 1 1(log | , ) ( |log , , ) ( , log |log , ,

nn h n n n n n np h R p r h s p r h hw q q- - -µ

1)ns -  
2. Sample 1 2 3( , , )r r r from 1 2 3 1 1 2 3( , , | , ) ( |log , , ) ( , , )t t t tp w R p r h s prr r r q r r r- +µÕ  
3. Sample s  from 1( | , ) ( , log |log , , ) ( )t t t t tp w R p r h h s pss q s- +µÕ  
4. Sample jm  from 1( | , ) ( , log |log , , ) ( )

jj t t t t t jp w R p r h h s pmm q m- +µÕ  1,2,3j =  
5. Sample jb  from 1( | , ) ( , log |log , , ) ( )

jj t t t t t jp w R p r h h s pbb q b- +µÕ  1,2,3j =  
6. Sample it  from 1( | , ) ( , log |log , , ) ( )

ii t t t t t ip w R p r h h s ptt q t- +µÕ  1,2i =  
7. Sample ts , 1, ,t n= K . 
8. Go to 1. 
 

The random walk chain MH algorithm is applied to sample parameter q , and a 
common and convenient choice of density for the increment random variable is the 
normal. The scale parameter for increment random variable determines the precise 
form of the candidate-generating density. A suitable value of the scale parameter 

____________________ 
2 The similar estimates of it  are observed even if two threshold levels are allowed to be negative. 
3 

2

21 1
(log ) ( , )p h N s

r
m

-
: , where m , 2s  and 2r  are obtained from the results of the SV model 

with leverage effect (SVL). 
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with good convergence properties can be selected by having an acceptance 
probability of 20% to 60%. 

The most difficult part of this Gibbs sampler is to sample th  from ( | ,
tt hp h w-

)tr . For sampling th , we used the grid-based chain suggested by Tierney (1994). 
Ritter and Tanner (1992) proposed the griddy Gibbs sampler for Gibbs sampling in 
problems where the conditional distributions cannot be sampled directly. This 
method was also described in Tierney (1994). Using this algorithm in its pure form 
may require quite a fine grid, thereby necessitating numerous posterior density 
evaluations to control the error in the approximation. To deal with this problem, 
Tierney (1994) proposed this algorithm in a Metropolis chain to ensure that the 
equilibrium distribution is precisely the target distribution even in a coarse grid. 

The reliability of posterior inference based on the simulation algorithm depends 
on whether the Markov chain has reached convergence. Hence, the simulated 
sample is drawn from the stationary distribution. Accordingly, we use the 
convergence diagnostic proposed by Geweke (1992) to check the convergence for all 
parameters. Geweke (1992) showed that the convergence diagnostic converges to 
the standard normal distribution as the number of samples goes to infinity (i.e., if 
the sequence of the Gibbs samples for a parameter is stationary). All results reported 
in this research are based on samples after the burn-in period, which have passed 
the convergence diagnostic for all parameters. 

 
 

III. Main Results 
 

3.1. Data and Benchmark Models 
 
We consider the daily stock return series of the S&P 500 Index and the MSFT. 

We use the period of stock price data with the global financial crisis to include the 
extremely volatile movements in stock markets. Hence, our data set spans from 3 
January 2006 to 30 June 2015. The sample size was 2,388 in each case. Figure 1 
shows the graphs of both return series. Each return series is demeaned by 
subtracting its sample mean. 

For each return series, we estimate the following five models. We let 
 

t t tr h u= , (0,1)tu N: . 

 
1. Basic SV model (SV0): 
 

1 1log (log )t t th h vm b m s+ +- = - + , 
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where (0,1)tv N: . 
 
2. SV model with (constant) leverage effect (SVL): 
 

1 1log (log )t t th h vm b m s+ +- = - + , 
 

where 1( , )t tcor u v r+ = . 
 
3. SV model with time-varying leverage effects (SV2L): 
 

1 1log (log )t t th h vm b m s+ +- = - + , 
 

where 1( , )
tt t scor u v r+ = . 

 
0 if 0

1 if 0
t

t
t

r
s

r

<ì
= í ³î

. (2) 

 
4. SV model with threshold effect (SVT): 
 

1 1log (log )
t t tt s s t s th h vm b m s+ +- = - +  

 
where ts  is defined as in (2). 

 
5. SV model with threshold and (constant) leverage effects (SVTL): 
 

1 1log (log )
t t tt s s t s th h vm b m s+ +- = - + , 

 
where 1( , )t tcor u v r+ =  and ts  is defined as in (2). 

 
6. Triple regime SV model with threshold and leverage effects (TRSV), as 

defined in Section 2. 
 
The basic SV model does not allow for any asymmetric relationship between 

return and volatility. The SVL model introduced by Harvey and Shephard (1996) 
allows for the leverage effect by incorporating the correlation between lagged return 
and volatility. Yu (2012) proposed a semiparametric SV model with time varying 
leverage effects by using the linear spline, and found the strong evidence to support 
the two-regime model rather than the three-regime model.4 Therefore, we consider  

____________________ 
4 We also estimate the triple regime model by Yu (2012). Note that unlike our TRSV model, 
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[Figure 1] Plots of stock return series: S&P 500 Index and MSFT 
 

 
____________________ 
parameters m  and b  are not regime-dependent in his model. The estimation results indicate that 
our TRSV model fits the data better than the triple regime model in terms of the comparison of the 
deviation information criterion. 
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only his SV model with time-varying leverage in the two-regimes, which is denoted 
by the SV2L model in the current study. The threshold levels for each regime are 
predetermined and the volatility level and persistence parameters are assumed to be 
constant in Yu (2012), which is not the case in the present research. So et al. (2002) 
proposed the SVT model, which accommodates the threshold effect in the model. 
Each regime in the SVT model is determined by the sign of lagged return. Smith 
(2009) introduced the SVTL model by combining these two models.5 Note that the 
correlation coefficient r  in the SVTL model is constant and does not depend on 
any one regime. Although the three models (i.e., SVL, SV2L, and SVTL) explain 
the asymmetric relationship between return and volatility, only the sign of the 
lagged return determines the asymmetric relationship in these models. By contrast, 
our TRSV model incorporates the sign and magnitude of the lagged return in 
determining each regime. The explanation in Section 2 indicates that the TRSV 
model allows three regimes, depending on the sign and magnitude of lagged return. 

All the SV models are estimated using the Bayesian method described in Section 
2.2. For the prior distribution for the benchmark SV models, we use the same 
distributions as the TRSV model, which are specified in Section 2.2. 

We use the deviance information criterion (DIC) proposed by Spiegelhalter et al. 
(2002) to compare the SV models. Berg et al. (2004) demonstrated that model 
selection can be easily done using DIC. This criterion combines a Bayesian measure 
of fit with a measure of model complexity, and can be expressed as follows: 

 
( ) 2PD PDDIC D D q= + = + , 

 
where D , which is a Bayesian measure of model fit, is defined as the posterior 
expectation of the deviance, and PD  is a measure of complexity (penalty term for 
increasing model complexity) defined as the difference between the posterior 
expectation of the deviance D  and the deviance evaluated at the posterior mean of 
the parameters ( )D q . Thus, ( ( ) )PDD D q= + , which is also a Bayesian measure of 
model fit, already contains a penalty term for model complexity. Moreover, DIC can 
be divided into a pure measure of fit ( )D q  and a measure of complexity 2PD . 
Berg et al. (2004) provided a detailed explanation. For the latent variable models, 
Celeux et al. (2006) explained numerous alternative definitions of DIC, depending 
on the different concepts of likelihood. Although DIC based on the conditional 
likelihood by conditioning on the latent variables is widely used for comparing 
stochastic volatility models owing to its easy computation, recent studies have 
argued against its use based on theoretical and practical grounds. Chan and Grant 
(2016) showed via a Monte-Carlo study that the conditional DIC tends to favor 

____________________ 
5 Smith (2009) allowed 

ts
s but found that the likelihood improvement over the model with 

invariant s  is trivial. 
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overfitted models, whereas DIC based on the observed-data likelihood appears to 
perform well. To compare the SV models, we use DIC based on the observed-data 
likelihood using the importance sampling algorithms proposed by Chan and Grant 
(2016). 
 
3.2. Results for the S&P 500 Index 

 
We first consider the S&P 500 Index return series. In particular, we collected 

every 10th iteration for the basic SV model, after burn-in period of 30,000 iterations, 
and follow-up period of 70,000. A total of 200,000 iterations were drawn for the SVL 
model. We chose a burn-in period of 110,000 iterations and stored every 10th 
iteration. For the SV2L and SVTL models, we iterated 200,000 and collected every 
20th iteration. We iterated 300,000 and stored every 20th iteration for SVT and 30th 
iteration for TRSV because posterior correlations among the parameters are 
relatively high and the convergence of the Gibbs samplers is relatively slow. In the 
SV2L, SVT, and SVTL models, the first 70,000, 20,000, and 20,000 samples, 
respectively, were discarded. For the TRSV model, the results were reported after 
the burn-in period of 30,000. 

Table 1 presents the estimation result of the basic SV model, and reports the 
posterior mean, posterior standard deviations, 5% quantile, and 95% quantile of all 
the parameters. The convergence diagnostics by Geweke (1992) is also provided in 
the table. The autoregressive coefficient b  represents volatility persistence, which 
is estimated to be extremely close to unity ( ˆ 0.984b = ). This result is no longer 
surprising because the sample period contains the financial crisis in 2008. During a 
crisis period, volatility is much higher than the rest period, and such a persistency 
makes the logarithm of volatility estimated to be a near unit root process. 

 
[Table 1] Estimation results of the basic SV model for S&P 500 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

m  -9.3851 0.2652 −9.8277 −8.9485 −0.3970 
b  0.9838 0.0047 0.9754 0.9910 −0.6349 

2s  0.0377 0.0078 0.0271 0.0527 0.3635 

Note: Values in the fourth and the fifth columns are the 5th and 95th quantile, respectively. The 
last column indicates the convergence diagnostic by Geweke (1992). 

 
Table 2 presents the estimation result of the SVL model. This model includes the 

correlation coefficient r , which exhibits the relationship between return and 
future volatility. This relationship is estimated to be −0.775, which indicates that 
return and volatility has a negative relationship that is relatively strong. The 
negative value of r̂  confirms what is known in the literature, including Harvey 



The Korean Economic Review  Volume 36, Number 2, Summer 2020 494

and Shephard (1996) and Yu (2005). The autoregressive coefficient b  is 
estimated to be 0.971, which is slightly lower but continue to be similar to that in 
the basic SV model. 

 
[Table 2] Estimation results of the SVL model for S&P 500 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

m  −9.3354 0.1252 −9.5392 −9.1273 1.4670 
b  0.9711 0.0044 0.9637 0.9781 0.8821 
r  −0.7747 0.0355 −0.8277 −0.7106 −0.7078 

2s  0.0660 0.0091 0.0512 0.0813 −0.2663 

Note: Same as in Table 1. 
 
Table 3 shows the estimation result of the SV2L model. Compared with the SVL 

model, parameters 0r  and 1r  take different values, depending on the sign of the 
return. When a return is negative, 0r  is estimated to be −0.629. When a return is 
non-negative, 1r  is estimated to be −0.863. This result implies that the leverage 
effect is stronger when a return is positive, which is also observed in Yu (2012) and 
Wu and Zhou (2014). 

 
[Table 3] Estimation results of the SV2L model for S&P 500 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

m  −8.4947 0.5954 −9.4311 −7.4743 −1.2160 
b  0.9708 0.0051 0.9622 0.9786 0.1355 

2s  0.0700 0.0130 0.0499 0.0916 0.1013 

0r  −0.6287 0.1120 −0.7976 −0.4151 −1.2870 

1r  −0.8625 0.0637 −0.9541 −0.7461 0.2275 

Note: Same as in Table 1. 
 
Table 4 presents the estimation result of the SVT model. In this model, 

parameters m  and b  take different values depending on whether a return is 
negative or not. The level of volatility is represented by the value of m . When a 
return is negative, 0m  is estimated to be −5.200. When a return is non-negative, 

1m  is estimated to be −13.904. This result implies that the volatility level is 
considerably higher when a return is negative. Although 0̂m  and 1̂m  are 
estimated to be relatively different from each other, volatility persistence parameter 
b  is estimated to be similar in both regimes ( 0

ˆ 0.965b =  and 1
ˆ 0.971b = ). 

Table 5 provides the estimation result of the SVTL model. Compared with the 
SVT model, the model now includes a (constant) correlation coefficient r . 
Correlation coefficient r  is estimated to be −0.750, which is similar to that in the 



Heejoon Han ∙ Eunhee Lee: Triple Regime Stochastic Volatility Model with Threshold and Leverage 495

SVL model. Compared with the SVT model in Table 4, the estimates of 0b  and 

1b  are similar, while the estimates of 0m  and 1m  are relatively different. This 
result shows that incorporating the leverage effect does not substantially change the 
volatility persistence estimates but substantially affects the volatility level estimates. 
Compared with the SVT model, the difference between 0̂m  and 1̂m  particularly 
becomes considerably minimal. 

 
[Table 4] Estimation results of the SVT model for S&P 500 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

0m  −5.1997 0.9065 −6.5174 −3.5536 0.4153 

1m  −13.9036 0.9300 −15.5326 −12.4276 −0.5469 

0b  0.9651 0.0078 0.9514 0.9768 0.1171 

1b  0.9711 0.0064 0.9595 0.9803 0.3598 
2s  0.0429 0.0086 0.0306 0.0576 −0.3977 

Note: Same as in Table 1. 
 

[Table 5] Estimation results of the SVTL model for S&P 500 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

0m  −8.9397 0.7988 −10.1186 −7.6049 −0.0642 

1m  −9.9655 1.0292 −11.7662 −8.3616 0.1148 

0b  0.9660 0.0126 0.9444 0.9862 −0.7465 

1b  0.9765 0.0111 0.9566 0.9926 −0.1092 
r  −0.7491 0.0529 −0.8293 −0.6546 1.1260 

2s  0.0617 0.0115 0.0444 0.0838 0.7423 

Note: Same as in Table 1. 
 
The estimation result of our TRSV model is provided in Table 6.6 The 

convergence diagnostics by Geweke (1992) in Table 5 shows that the Markov chains 
converged well. Figures 2 to 4 provide the trace of the MCMC iterates after the 
burn-in period, autocorrelations of the draw sequences, and the estimated posterior 
densities of all parameters. From the trace and autocorrelation plots, we observed 
the high speed of convergence. The autocorrelations of the iterates decayed 
relatively quickly in all parameters. Figure 5 provides the plot of the posterior mean 
of the MCMC iterates for th . The thick line represents the estimated th  and 
the dotted line indicates the absolute value of the demeaned S&P 500 returns. 
Figure 5 also shows that the estimated volatilities explain the absolute value of the 

____________________ 
6 We also investigate the posterior medians for all parameters, and find that the results are 

considerably similar. 
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demeaned S&P 500 returns relatively well, particularly in light of their trend 
behaviors. 

First, threshold parameters 1t  and 2t  are estimated to be −0.0062 and 0.004, 
which are the 21% and 68% quantiles, respectively, of the demeaned return series. 
When a return is below its 21% quantile, it indicates regime 1; and a return between 
its 21% and 68% quantiles belongs to regime 2. When a return is above its 68% 
quantile, it is in regime 3. 

 
[Table 6] Estimation results of the TRSV model for S&P 500 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

1m  −10.4208 1.7477 −13.3541 −7.5721 −1.0970 

2m  −8.8825 0.5380 −9.5024 −7.8569 −0.2734 

3m  −9.9058 1.8259 −12.9696 −7.0469 0.5169 

1b  0.9880 0.0072 0.9746 0.9975 1.0730 

2b  0.9437 0.0150 0.9188 0.9681 −0.1433 

3b  0.9923 0.0054 0.9820 0.9988 0.4069 

1r  −0.7210 0.0905 −0.8717 −0.5646 −0.1321 

2r  −0.6438 0.1280 −0.8248 −0.4253 0.5928 

3r  −0.9008 0.0556 −0.9703 −0.7922 0.3558 

1t  −0.0062 0.0010 −0.0078 −0.0046 0.3749 

2t  0.0040 0.0006 0.0029 0.0048 −1.0540 
2s  0.0742 0.0133 0.0536 0.0966 −0.9142 

Note: Same as in Table 1. 
 

[Figure 2] Plots of the MCMC iterates obtained from the TRSV model fitting of S&P 500 
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[Figure 3] Autocorrelation of the MCMC iterates for the TRSV model fitting of S&P 500 
 

 
 

[Figure 4] Estimated posterior densities for the TRSV model fitting of S&P 500 
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[Figure 5] Estimated th  with | |tr  for the TRSV model fitting of S&P 500 
 

 
 
Second, comparing the estimates of the correlation coefficient r  is relatively 

interesting. Depending on each regime, the estimated values of r  show different 
magnitudes of the leverage effect. In regime 1, it is estimated at −0.721, which is 
relatively similar to the values in the SVL and SVTL models. Meanwhile, r  is 
estimated to be −0.6438 in regime 2. However, in regime 3, it is estimated to be −0.901, which implies that the leverage effect is considerably strong for the large 
positive return period. 

Third, the volatility persistence coefficient b  in regimes 1 and 3 is estimated to 
be similar. 1b̂  and 3b̂  are 0.988 and 0.992, respectively. Meanwhile, the volatility 
persistence coefficient b  in regime 2 is estimated to be 0.944, which implies that 
the volatility in this regime is minimally persistent. The volatility level parameters 

1̂m , 2m̂ , and 3m̂  are −10.421, −8.8825, and −9.906, respectively. They are not 
significantly different according to the posterior 90% confidence intervals. 

Table 7 provides the comparison results, which imply that our TRSV model fit 
the data best in terms of DIC introduced in the previous section. DIC of the TRSV 
model is −15,498.3, which is the lowest. Therefore, the TRSV model performs best 
in terms of DIC.7 

____________________ 
7 We also estimate the two regime SV model with one unknown threshold level. The estimation 

results show that threshold t  is estimated to be negative. The estimates of t  in the two regime SV 
model are relatively similar to the estimates of 1t  in our TRSV model for S&P500 and MSFT. Our 
estimation results are consistent with the empirical evidence in previous studies, such as So, Chen, and 
Chen (2005); and Chen and So (2006) in the GARCH frame. When we compare DIC of the model, 



Heejoon Han ∙ Eunhee Lee: Triple Regime Stochastic Volatility Model with Threshold and Leverage 499

[Table 7] Comparison results of the SV models for S&P 500 
 

Models DIC PD  Rank 

SV0 −15356.2 (0.4123) 11.7 (0.4135) 6 
SVL −15483.4 (0.7605) 13.7 (0.7621) 2 

SV2L −15482.2 (0.5137) 14.6 (0.5154) 4 
TSV −15411.7 (0.6157) 12.6 (0.6153) 5 

TSVL −15482.8 (0.5040) 12.9 (0.5070) 3 
TRSV −15498.3 (0.8490) 19.0 (0.8521) 1 

Note: DIC is deviance information criterion; PD  is a measure of complexity defined as the 
difference between D  and ( )D q , where D  is the posterior expectation of the deviance; 
and ( )D q  is the deviance evaluated at the posterior mean of the parameters. Numerical 
standard errors are in parentheses. 

 
3.3. Result for Microsoft 

 
We now consider the stock return series of Microsoft Corporation. For the SV, 

SVT, and SVTL models, we had 200,000 iterations, and the first 50,000 samples for 
SV and first 20,000 samples for SVT were discarded as a burn-in period. For SVTL, 
we chose a burn-in period of 40,000. For SVL, 250,000 iterations were drawn and 
the first 100,000 samples were discarded. For the SV2L and TRSV models, 300,000 
iterations were drawn, and the first 40,000 and 130,000 samples, respectively, were 
discarded as a burn-in period. We collected every 10th samples for the SV model. 
For the SV2L and TRSV model, we stored every 30th iteration and collected every 
20th iteration for the remainder of the models. 

Table 8 provides the estimation results of the basic SV model. The volatility level 
m  is estimated to be −8.691, which is higher than that in the S&P 500 Index case. 
Autoregressive coefficient b  is estimated to be similar to that in the S&P 500 
Index case. 

 
[Table 8] Estimation results of the basic SV model for MSFT 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

m  −8.6907 0.1543 −8.9393 −8.4342 −1.1940 
b  0.9746 0.0059 0.9647 0.9839 0.5896 

2s  0.0325 0.0050 0.0250 0.0413 −0.5077 

Note: Same as in Table 1. 
 
Table 9 presents the estimation results of the SVL model. Correlation coefficient 

r  is estimated to be −0.304. Similar to the stock index case, return and volatility 
has a negative relationship. However, the leverage effect is substantially weaker 
____________________ 
the triple regime SV model is shown to fit better than the two regime SV model for S&P500 and MSFT. 
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compared with that in the stock index. Autoregressive coefficient b  is estimated 
to be 0.970, which is similar to that in the basic SV model. 

 
[Table 9] Estimation results of the SVL model for MSFT 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

m  −8.6910 0.1352 −8.9141 −8.4666 1.2990 
b  0.9700 0.0061 0.9596 0.9796 1.2610 
r  −0.3041 0.0572 −0.3906 −0.2042 1.3240 

2s  0.0376 0.0057 0.0288 0.0477 −1.0350 

Note: Same as in Table 1. 
 
Table 10 shows the estimation results of the SV2L model. When a stock return is 

negative, the correlation coefficient parameter 0r  is estimated to be positive at 
0.7546. Finding a positive estimate for 0r  is relatively surprising, which was also 
observed in Xu (2010), Yu (2012), and Wu and Zhou (2014). One explanation for 
this result was suggested by Xu (2010). This outcome may be caused by the wait-
and-see investing strategy by investors during turmoil periods. When stock price 
drops beyond a certain level, investors become cautious (more risk averse) and may 
choose a wait-and-see investing strategy. This strategy would lead to the reverse 
leverage effect. Meanwhile, when a stock return is non-negative, 1r  is estimated to 
be −0.9675. In addition, volatility level m  is estimated to be considerably higher 
than those in SV and SVL. 

 
[Table 10] Estimation results of the SV2L model for MSFT 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

m  −1.5721 0.7478 −2.8592 −0.3652 0.9373 
b  0.9686 0.0036 0.9625 0.9742 0.4358 

2s  0.0994 0.0164 0.0738 0.1278 0.0134 

0r  0.7546 0.0605 0.6431 0.8405 0.9878 

1r  −0.9675 0.0238 −0.9951 −0.9233 −1.5400 

Note: Same as in Table 1. 
 
Table 11 reports the estimation results of the SVT model. When a stock return is 

negative, the volatility level parameter 0m  is estimated to be −7.843. When a stock 
return is non-negative, 1m  is estimated to be −10.178. This result implies that the 
volatility level is substantially high when a return is negative. The volatility 
persistence parameter 0b  and 1b  are estimated to be 0.965 and 0.978, 
respectively. 
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[Table 11] Estimation results of the SVT model for MSFT 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

1m  −7.8429 0.4817 −8.4998 −6.9563 −0.3615 

2m  −10.1780 0.8415 −11.7750 −9.0710 1.0370 

1b  0.9649 0.0119 0.9446 0.9836 0.2324 

2b  0.9775 0.0105 0.9578 0.9920 −0.4136 
2s  0.0347 0.0052 0.0269 0.0439 −0.2482 

Note: Same as in Table 1. 
 
Table 12 provides the estimation results of the SVTL model. Correlation 

coefficient r  is estimated to be −0.330, which is similar to that in the SVL model. 
Volatility persistence parameters 0b  and 1b  are estimated to be 0.966 and 0.975, 
respectively, but their difference is not substantial. 

 
[Table 12] Estimation results of the SVTL model for MSFT 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

0m  −9.0072 0.6205 −10.1296 −8.2300 1.4030 

1m  −8.3118 0.8297 −9.6212 -6.8313 -0.8689 

0b  0.9652 0.0136 0.9421 0.9868 -0.2463 

1b  0.9752 0.0128 0.9521 0.9936 0.6189 
r  −0.3297 0.0756 −0.4500 -0.2043 0.5807 

2s  0.0385 0.0058 0.0298 0.0486 -1.0830 

Note: Same as in Table 1. 
 
Compared with the SVT model, note that volatility level parameter m  is 

estimated to be high when a stock return is non-negative. When the model 
incorporates the threshold and leverage effects, the volatility level parameter is 
estimated to be higher when a stock return is non-negative, although the difference 
between 0̂m  and 1̂m  is not significant. 

The estimation results of our triple regime SV model is provided in Table 13. 
The convergence diagnostics by Geweke (1992) in Table 13 shows that the Markov 
chains converged well. Figures 6 to 8 provide the trace of the MCMC iterates after a 
burn-in period, autocorrelations of the draw sequences, and estimated posterior 
densities of all parameters. Figure 5 provides the plot of the posterior mean of the 
MCMC iterates for th . The thick line represents the estimated th  and the 
dotted line indicates the absolute value of the demeaned MSFT returns. Evidently, 
the estimated volatilities explain the absolute value of the demeaned MSFT returns 
rather well. 
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[Table 13] Estimation results of the TRSV model for MSFT 
 

 Posterior Convergence 
Parameters Mean Std errors 5% 95% Diagnostics 

1m  −3.7631 1.3826 −6.3070 −1.7269 0.5950 

2m  −3.9428 1.1566 −5.7137 −1.9253 1.3650 

3m  −8.8866 2.1580 −12.4465 −5.2933 0.2560 

1b  0.9620 0.0108 0.9459 0.9823 −0.1534 

2b  0.9761 0.0053 0.9667 0.9842 1.2510 

3b  0.9906 0.0074 0.9761 0.9989 −0.2181 

1r  0.5839 0.2152 0.1254 0.8371 0.2914 

2r  −0.7128 0.1061 −0.8598 −0.5174 −0.4251 

3r  −0.7037 0.0906 −0.8512 −0.5537 0.3661 

1t  −0.0055 0.0007 −0.0068 −0.0045 0.0849 

2t  0.0139 0.0008 0.0124 0.0151 0.4944 
2s  0.0677 0.0149 0.0446 0.0951 −0.3677 

Note: Same as in Table 1. 
 

[Figure 6] Plots of the MCMC iterates obtained from the TRSV model fitting of MSFT 
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[Figure 7] Autocorrelation of the MCMC iterates for the TRSV model fitting of MSFT 
 

 
 

[Figure 8] Estimated posterior densities for the TRSV model fitting of MSFT 
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[Figure 9] Estimated th  with | |tr  for the TRSV model fitting of MSFT 
 

 
 
First, parameter 1t  for our TRSV model is estimated to be −0.0055, which is the 

33% quantile of the demeaned return series. When a return is lower than its 33% 
quantile, it belongs to regime 1. Parameter 2t  is estimated to be 0.0139, which is 
85% quantile of the return series. Hence, when a return is between its 33% and 85% 
quantiles, it belongs to regime 2. When a return is above its 85% quantile, it is in 
regime 3. Therefore, regime 1 contains 33% large negative returns, regime 2 
includes 52% moderate negative/positive returns, and regime 3 has 15% large 
positive returns. Compared with the S&P 500 Index case, where regimes 1, 2 and 3 
contain 21%, 47%, and 32%, respectively, of the return series, regime 1 includes 
more return series, while regime 3 contains less return series in MSFT. 

Second, the correlation coefficient r  in regimes 2 and 3 are estimated to be 
similar, and 2̂r  and 3r̂  are −0.713 and −0.704, respectively, which are below the 
estimates in SVL and SVTL models. This result indicates that when a return is 
moderately negative or positive or largely positive, the leverage effect is estimated to 
be stronger than that in the SVL and SVTL models. However, it is estimated to be 
positive (i.e., 0.584) in regime 1, thereby corresponding to the results in the SV2L 
model. When there is a largely negative lagged return, we can interpret the reverse 
leverage effect as follows. A large negative return leads to increased debt/equity ratio, 
and investors will expect increased future return. The reason is that blue chip stocks, 
such as Microsoft, have less risk compared with other stocks during periods of 
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financial crisis. Investors expect that the stock price for MSFT will bounce, and the 
current price is substantially low, given all the financial aspects of Microsoft, 
including debt/equity ratio. This result may be caused by a wait-and-see investing 
strategy by investors during periods of turmoil. When stock price drops beyond a 
certain level, investors become cautious (more risk averse) and may choose a wait-
and-see investing strategy. This strategy would lead to the reverse leverage effect. 
Accordingly, this aspect explains why triple regimes are introduced to differentiate 
the time-varying leverage effects that are dependent upon the sign and magnitude of 
lagged returns. 

Third, volatility level parameter m  is estimated to be the highest and lowest in 
regimes 1 and 3, respectively. When the return is all positive (regime 3), volatility is 
the lowest. Volatility level parameter m  in regime 2 is estimated to be −3.943, 
which is similar to 1m . If we compare regimes 1 and 3, then it appears that the 
volatility level and the leverage effect are substitutes for MSFT. In regime 1, the 
volatility level is markedly high, while there exists a reverse leverage effect. In 
regime 3, volatility level is low and there exists a conventional leverage effect. 

The volatility persistence coefficient b  is estimated to be the largest in regime 3 
( 1 2

ˆ ˆ,b b , and 3b̂  are 0.962, 0.976, and 0.991, respectively). 
Lastly, Table 14 shows that our TRSV model achieves the lowest DIC, which 

implies that our TRSV model fits the data best. DIC of our TRSV model is −13,346.6, which is substantially lower compared with those of the other SV models. 
The second best model in terms of DIC is the SV2L model, and its DIC is −13,311.6. The SVL model has a similar DIC as the SVTL model. 

 
[Table 14] Comparison results of the SV models for MSFT 
 

Models DIC PD  Rank 

SV0 −13297.9 (0.3910) 22.6 (0.3920) 6 
SVL −13310.5 (0.8043) 24.1 (0.8047) 3 

SV2L −13311.6 (1.2394) 31.4 (1.2380) 2 
TSV −13303.1 (0.7697) 24.2 (0.7711) 5 

TSVL −13310.3 (0.8350) 23.3 (0.8360) 4 
TRSV −13346.6 (1.6605) 24.7 (1.6592) 1 

Note: Same as in Table 7. 
 
 

IV. Conclusion 
 
This study investigates a new stochastic volatility model that accommodates three 

regimes and the threshold and leverage effects. We find evidence that the 
relationship between stock return and volatility depends on the magnitude and sign 
of a return. In the S&P 500 Index and MSFT, the results show that the leverage 
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effects are estimated to be different in each of the three regimes. In both cases, when 
stock price rises beyond a certain level (in regime 3), the conventional leverage effect 
becomes considerably strong. In regime 3, correlation coefficient r  was estimated 
to be −0.901 and −0.704 for the index and MSFT, respectively. In regime 1 (large 
negative return), the reverse leverage effect appeared for MSFT, while the 
conventional leverage effect appeared for the index. In regime 2 (moderate negative 
or positive return), the conventional leverage effect appeared in the S&P 500 Index 
and MSFT. Comparing the leverage effects between the index and MSFT, the 
individual firm showed significantly weaker leverage effects than the index. 
Compared with the existing SV models, our model fits the data best in both stock 
cases, thereby supporting the idea of allowing three regimes in our model. 

The current research provides empirical evidence that the relationship between 
return and volatility depends on the sign and magnitude of a return. We conjecture 
that investors behave differently when stock prices show rapid changes. It would be 
desirable to further investigate why the leverage effect becomes stronger when stock 
return is largely positive or the reverse leverage effect could appear when stock 
return is largely negative. Moreover, we extend our model to generalized n-regime 
stochastic volatility models, in which the number of regimes can be determined 
endogenously. We leave these aspects for future studies. 
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