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Regression Discontinuity with Integer Score and 
Non-Integer Cutoff* 
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In regression discontinuity (RD), the treatment is determined by a continuous score G 
crossing a cutoff c or not. However, often G is observed only as the ‘rounded-down integer S’ 
(e.g., birth year observed instead of birth time), and c is not an integer. In this case, the 
“cutoff sample” (i.e., the observations with S equal to the rounded-down integer of c) is 
discarded due to the ambiguity in G crossing c or not. We show that, first, if the usual RD 
estimators are used with the integer nature of S ignored, then a bias occurs, but it becomes 
zero if a slope symmetry condition holds or if c takes a certain “middle” value. Second, the 
distribution of the measurement error e G S= -  can be specified and tested for, and if the 
distribution is accepted, then the cutoff sample can be used fruitfully. Third, two-step 
estimators and bootstrap inference are available in the literature, but a single-step ordinary 
least squares or instrumental variable estimator is enough. We also provide a simulation 
study and an empirical analysis for a dental support program based on age in South Korea. 
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I. Introduction 

 
Regression discontinuity (RD) is widely used to find treatment effects with 

observational data; see Imbens and Lemieux (2008), Lee and Lemieux (2010), Choi 
and Lee (2017, 2021), Cattaneo and Escanciano (2017), Cattaneo et al. (2019), and 
references therein. Typically, there are a binary treatment D , an outcome Y  and 
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a continuous score (or running variable) G , where D  is determined by G  
crossing a cutoff c  or not. If D  is fully determined by G  so that ( | )E D G

D= , the RD is a ‘sharp RD (SRD)’, otherwise, if D  is partly determined by an 
error term, the RD is a ‘fuzzy RD (FRD)’. 

The main attraction of RD is that local observations around c  are balanced in 
all covariates. Using only such local observations enables estimating the treatment 
effect while avoiding confounders despite no covariate controlled. Theoretically 
speaking, this ‘local randomization’ uses a small neighborhood of c , but in 
practice, using a sizable neighborhood is unavoidable if there are not many 
observations around c . 

Suppose the rounded-down integer S Gº ê úë û  is observed, instead of the genuine 
score G . There are many examples for this (Oreopoulos, 2006; Battistin et al., 2009; 
Li et al., 2015, among others), and the most notable is birth year (or age in years) 
observed for confidentiality instead of the exact birth time. In this case, if c  is not 
an integer (e.g., January 1), it is unclear whether individuals around G c=  are 
treated or not. For instance, an education law D  goes into effect on September 1, 
2016, and a student is subject to the law if born on or after September 1, 2010: D =
1[ ]c G£  with birth time G  and 2010.67c = , where 1[ ] 1A º  if A  holds and 0 
otherwise. It is not clear whether the “cutoff sample” (i.e., those with S = 2010) are 
treated or not. 

A couple of studies addressed RD with an integer score. Lee and Card (2008) 
examined genuinely integer/discrete score (i.e., ;G S=  e.g., the number of 
students in a school). They recommended clustered inference with clustering at 
each support point of S , but their assumptions are untenable (Kolesár and Rothe, 
2018). Dong (2015) proposed two-step estimators, assuming that the ‘measurement 
error’ 

 
e G G G S= - = -ê úë û  is independent of S  (‘ e SC ’)  (1) 

 
and follows a known distribution. Imbens and Wager (2019) proposed an optimal 
estimation and inference for SRD, which allows a discrete or continuous score. 
Bartalotti et al. (2021) generalized Dong (2015) to group-varying measurement 
errors. Broadly viewed, the problem of observing S G= ê úë û  instead of G  is a 
special case of mismeasured scores (Lee, 2017; Davesize and Le Barbanchon, 2017). 

Dong (2015) addressed integer c  under a known distribution of e , and 
suggested dropping the cutoff sample if c  is not an integer. This amounts to 
ruling out non-integer c , because the problem of non-integer c  is relevant only 
to the cutoff sample. Thus we write henceforth that the Dong’s approach is for 
integer c . In this paper, under a known distribution for e  with e SC , we 
address RD with integer S  and any c , to show that the cutoff sample can be used 
fruitfully in testing for the distribution assumption on e  and estimating the 
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treatment effect if the assumption is not rejected. 
Any distribution on [0,1] can be adopted, but the most basic is the uniform 

distribution (‘ [0,1]U ’) adopted in Dong (2015) as well as in this paper. ‘ [0,1]e U: ’ 
is plausible particularly when G  is birth time (Dong, 2015, p. 428). Note that  

 
1 1

0
[0,1]: ( ) ( 1)k k

ke U E e d km t t -º = = +ò: ;  

 
we need mostly only ( )E e  and 2( )E e , not all of [0,1]U . Since our approach with 
integer c  becomes that in Dong (2015), assume a non-integer ,c  unless 
otherwise mentioned.  

We make three contributions for RD with integer score S  and non-integer c . 
First, the usual RD estimators ignoring the integer nature of S  are inconsistent, 
but under [0,1]e U:  and e SC , they are consistent if a slope symmetry around 
c  holds or if c  takes a “middle” value. Second, the cutoff sample can be used to 
test for [0,1]e U:  and to estimate the treatment effect. Third, two-step estimators 
with bootstrap inference have been proposed for RD with S  by Dong (2015), but 
single-step ordinary least squares estimator (OLS) or instrumental variable 
estimator (IVE) is enough.  

The requisite assumptions for our proposals are the same as the assumptions 1­6 
in Dong (2015, p. 427), but there are differences between our and Dong’s (2015) 
approaches. First, whereas Dong allowed a J-order polynomial to account for a 
con­tinuous function of the score in Y , we focus on 1J =  (linear) and 2J =  
(quadratic), following Gelman and Imbens (2019). Second, Dong considered 
integer c , and dropped the cutoff sample when c  is not an integer; as a result, 
her no-bias condition when the integer nature of S  is ignored is only the slope 
symmetry around c , missing the condition under non-integer c . Third, when c  
is not an integer, we use the cutoff sample to test for the distribution/moment 
assumption on e , whereas Dong simply drops the cutoff sample as was already 
noted. Fourth, when the assumption is not rejected by the test, we use the cutoff 
sample along with the non-cutoff sample for a higher efficiency.  

In RD with G , often the location normalization G c-  is done so that the 
cutoff becomes 0 for the normalized score G c- . With S G= ê úë û , the analogous 
normalization is, not a non-integer number S c- , but an integer  

 

0S S cº - ê úë û  ( 0 0S =  for cutoff sample) with 0c c cº - ê úë û  0(0 1)c£ < .  (2) 

 
In the education law example where c = 2010.67, we have c =ê úë û 2010, 0S Sº -

2010c S= -ê úë û , and 0 0.67c c cº - =ê úë û  showing where the cutoff falls within the 
“cutoff year” 2010.  

Before proceeding further, to prevent confusion, we note the difference between 
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the ‘classical measurement error’ and ‘measurement error in RD with integer score’. 
In the former, a mismeasured continuous S  is generated by S G e= +  with 
e GC : a continuous error e  is added to the genuine continuous score G . In the 
latter, G  is generated by S e+  with e SC : a continuous error e  is added to 
the integer S ; ‘ S G e= + ’ does not work, as G e+  is not an integer. For example, 
continuous birth time 2010.5 is generated by the integer 2010 plus 0.5; ‘ e  within 
the year S ’ is independent of S . 

In the remainder of this paper, Sections 2-4 present the aforementioned three 
con­tributions one by one, with most proofs relegated to the appendix. Section 5 
conducts a simulation study, and Section 6 presents an empirical example for a 
dental support program in South Korea where G  is age. Finally, Section 7 
concludes. What is observed is ( ,i iS Y ) for SRD and ( , ,i i iD S Y ) for FRD, 1, ,i = K
N , which are independent and identically distributed; we often omit the subscript 
i , as has been done already. In most cases, we address FRD first, and then SRD 
later as a special/limiting case of FRD.  

 
 

II. No Bias Condition for Ignored Integer Score  
 

2.1. Local Approaches with Continuous Score  
 
Suppose G  is observed for a while to see what is usually done in RD. Define  
 

1[ ] 1[0 ]c G G cd º £ = £ - ;  

 
( )Dd ¹  is to be used as an instrument variable (IV) for D  in FRD, whereas 

Dd =  in SRD. Let ( 0 1,D D ) be the ‘potential treatments’ corresponding 0d = , 
1 D-  is an outcome variable when d  is taken as the “deep treatment”―and let 
( 0 1,Y Y ) be the potential outcomes corresponding to 0,1D = . Define ‘compliers’ 
as those with ( 0 10, 1D D= = )―‘compliers’ because they get treated complying to 
the ‘assignment’ d ―and assume 0 1D D£  to rule out ‘defiers’ with ( 0 1,D =

1 0D = ). 
Define the ‘treatment effect on the just-treated compliers’ db  for FRD: 
 

1 0(d E Y Yb º + |complier, 1 0) lim (
g c

G c E Y Y+

¯
= º - |complier, G g= ); 

 
in SRD, everybody is a complier due to Dd = . For FRD, the most popular 
approach to find db  is using a local linear model: for some b  parameters and 
error 1U ,  
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( i ): 0 1 1 1( ) ( )dY D G c G c Udb b b b d= + + - + - + , 1( | ) 0E U G = , 

( ii ): 0 1 1( | ) ( | ) ( ) ( )dE Y G E D G G c G cdb b b b d= + + - + -  

(taking ( | )E G×  on ( i )). (3) 
 

Here, db  can be estimated by the IVE of Y  on  
 

{1, , ( ), ( )}D G c G cd ¢- -  with IV GZ º {1, , ( ), ( )}G c G cd d ¢- - . 
 
Locally around G c= , this is not a parametric model, because the local linear 

function 0 1 1( ) ( )G c G cdb b b d+ - + -  in (3) with the left and right slopes 1b  and 

1 1db b+  is simply to improve the finite sample behavior of the “local-constant” 
IVE of Y  on (1, )D  with (1, )d  as the IV, where the local linear function is 
simplified into the constant 0b . See Hahn et al. (2001), Dong (2018), Choi and 
Lee (2018) and references therein for identification (and estimation) of db  in 
FRD.  

The local linear model has become almost the “industry standard”, but a local 
quadratic version is sometimes used: for an error 2U ,  

 
2 2

0 1 1 2 2 2( ) ( ) ( ) ( )dY D G c G c G c G c Ud db b b b d b b d= + + - + - + - + - +  (4) 

  
where two additional terms 2

2( )G cb -  and 2
2 ( )G cdb d -  appear. For equation 

(4), db  can be estimated by the IVE of Y  on  
 

2 2{1, , , ( ),( ) , ( ) }D G c G c G c G cd d- - - -  with IV 
2 2{1, , , ( ),( ) , ( ) }G c G c G c G cd d d- - - - .  

 
If desired, we can go further than quadratic for more flexibility, but Gelman and 

Imbens (2019) advised against the higher-order terms, because higher-order terms 
often make both estimation and inference unstable, and also because they lead to 
extreme weights in the resulting causal effect as a weighted average of 1 0Y Y- . For 
this reason, we also restrict our discussion to local linear or quadratic models as was 
already noted.  

Consider two locally linear models for ( | )E D G  and ( | )E Y G  analogous to 
(3)(ii), but with d  replacing ( | )E D G  on the right side: for some a  and g  
parameters,  

 
( i ): 0 1 1( | ) ( ) ( )E D G G c G cd da a d a a d= + + - + - , 

( ii ): 0 1 1( | ) ( ) ( )E Y G G c G cd dg g d g g d= + + - + - . (5) 

  
(5)(i) would be the model for the first-stage OLS for D  in two-stage OLS when 
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D  is an endogenous regressor for Y , and (5)(ii) is the reduced form for Y  
obtained by substituting (5)(i) into the ( | )E D G  in (3)(ii) and defining properly 
the g ’s as functions of the a ’s and b ’s.  

Suppose we do the OLS of D  and Y  on {1, ,( ), ( )}GZ G c G cd d ¢º - -  for (5) 
to get the slope estimators d̂a  and d̂g  of d , respectively. Then, denoting the 
slope estimator of D  in the IVE for (3)(i) as ˆ

db , ‘ ˆ ˆ ˆ/d d db g a= ’ holds. We refer to 
this as ‘IVE=Wald’ because ˆ ˆ/d dg a  is often called ‘the Wald estimator’. More 
generally, given any regressor vector Z , it is well-known that ‘IVE=Wald’ holds, 
whenever the OLS of D  and Y  on ( , )Zd  is done for ˆ ˆ/d dg a  and the IVE of 
Y  on ( , )D Z  is done for ˆ

db  with the IV ( , )Zd . As a special case, ‘IVE=Wald’ 
also holds for the local quadratic approach in (4) with 2{ ,( ) , (GZ Z G c Gd¢= - -

2) }c ¢ . 
 

2.2. Approaches with Integer Score 
 
Turning back to S  observed instead of G , one might try to use equation (3) 

with G  replaced by S , or G c-  replaced by 0S S cº - ê úë û ; equivalently, one 
might try to do the same for the Wald estimator based on (5). However, this does 
not work, because ( | )E S×  should be derived from ( | )E G×  as follows.  

Recall G S e= + . Using [0,1]e U S: C , we have  
 

( | ) ( | ) ( | ) ( ) 0.5E G S E S e S S E e S S E e S= + = + = + = + . 

  
‘ ( ) 0.5E e = ’ reveals that only ( )E e  is needed, not the full distribution of e , and 
that a distribution assumption other than [0,1]e U:  can be used as long as ( )E e  
is known.  

Since 00 1c£ <  and [0,1]e U: , (2) gives  
 

0 01[ ] 1[0 ] 1[ ( )] 1[ ] 0c G S e c e S c c c e S cd º £ = £ + - = - £ - - - = - £ - =ê ú ê úë û ë û  

for 0 1S £ - , unclear for 0 0S = , 1 for 0 1S ³ . 

 
Hence, as long as 0 0S ¹ , we have 1[ ] 0c Gd º £ =  if 0 1S £ - , and 1 if 0 1S ³ ; 
i.e., as long as 0 0S ¹ , d  is fully determined by S . Observe  

 

0 00.5 0.5 ( ) 0.5S c S c c c S c+ - = - + - - = + +ê ú ê úë û ë û .  

 
For 0 0,S c S¹ Û ¹ê úë û  taking ( | )E S×  on ( | )E D G  in (5)(i) and substituting 

( | ) 0.5E G S S= +  gives  
 

( i ): 0 1 0 0 1 0 0( | ) ( 0.5 ) ( 0.5 )E D S S c S cd da a d a a d= + + + - + + -  
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( ii ): 0 1 0 1 0 1 0 1 0(0.5 ) { (0.5 )}c c S Sd d da a a a d a a d= + - + + - + + . (6) 

 
(6)(ii) shows that the slope of d  in the OLS of D  on 0 0(1, , , )S Sd d  with the 
observations 0 0S ¹  is 1 0(0.5 )cd da a+ - , not da  that is the slope of d  in 

( | )E D G  of (5)(i). Doing analogously for ( | )E Y S  in (5)(ii), we get  
 

( i ): 0 1 0 0 1 0 0( | ) ( 0.5 ) ( 0.5 )E Y S S c S cd dg g d g g d= + + + - + + -  

( ii ): 0 1 0 1 0 1 0 1 0(0.5 ) { (0.5 )}c c S Sd d dg g g l d g g d= + - + + - + + . (7) 

 
(7)(ii) shows that the slope of d  in the OLS of Y  on 0 0(1, , , )S Sd d  with the 
observations 0 0S ¹  is 1 0(0.5 )cd dg g+ - , not dg  that is the slope of d  in 

( | )E Y G  of (5)(ii).  
From (6)(ii) and (7)(ii), under ( | ) ( ) 0.5E e S E e= =  which holds for any 

distribution on [0,1] symmetric about 0.5  independently S , it follows that if  
 

1 0 1 0(0.5 ) (0.5 ) 0c cd da g- = - = ,  (8) 

 
i.e., if either the local slope symmetry 1 1 0d da g= =  holds or 0 0.5{ ( )}c E e= = , 
then the slopes of d  in (6)(ii) and (7)(ii) become da  and dg , respectively, so 
that the Wald estimator is consistent for db  in (3) despite 0S , not G c- , used in 
the OLS’s. Then, due to IVE=Wald, the slope of D  in the IVE to the Y  model 
with the regressors 0 0(1, , , )D S Sd  and IV 0 0(1, , , )S Sd d  is also consistent for db  
in (3). Even when (8) is not exactly zero, each product becomes small if either factor 
is small.  

A caution is that, although (5) with G  is nonparametric because the true model 
is polynomially approximated locally around G c= , its derived versions (6) and (7) 
with integer 0S  are not, because a local neighborhood 0( 1, 2, )S = ± ± K  of 0 0S =  
is not really local. That is, the nonparametric local linear model in (3) with G  
becomes a parametric model with 0S  in (6) and (7).  

Instead of requiring (8) that is restrictive, we can modify the slopes of d  to 
identify db : from (6)(ii) and (7)(ii), still ruling out 0 0S = , we get  

 
0 0

0 0

{ slope for ( | ) in (7)(ii)} { slope for ( | ) in (7)(ii)}(0.5 )

{ slope for ( | ) in (6)(ii)} { slope for ( | ) in (6)(ii)}(0.5 )d

E Y S S E Y S c

E D S S E D S c

d d
b

d d
- -

=
- -

.  (9) 

 
For SRD, replace the denominator with one.  

For the local quadratic model (4), using the quadratically extended versions of (5) 
in between (A.1) and (A.2) of the appendix, the appendix proves that db  equals 

 



The Korean Economic Review  Volume 39, Number 1, Winter 2023 80

2
0 1 0 2

2
0 1 0 2

{ slope for ( | ) in (A.3)} { slope in (A.3)} { slope in (A.3)}

{ slope for ( | ) in (A.2)} { slope in (A.2)} { slope in (A.2)}

E Y S S c S c

E D S S c S c

d d d
d d d

- +
- +

 

where 1 00.5c cº -  and 2
2 0 0(1 / 6)c c cº - + , (10) 

 
still ruling out 0 0S = . For SRD, replace the denominator with one.  

Differently from (9) and (10) needing only ( | ) ( ) 0.5E e S E e= = , (10) needs 
2 2( | ) ( ) 1 / 3E e S E e= =  extra. Whereas any symmetric distribution on [0,1] 

satisfies ( ) 0.5E e = , it is hard to think of distributions other than [0,1]U  satisfying 
2( ) 1 / 3E e =  exactly. Of course, it is still possible that both moment conditions are 

closely met, if not exactly met, by the distribution of e . 
In (10), if 0 0.5c = , then 1 0c = , but 2 0c =  only when 0c = 0.2115 or 0.7885: 

1c  and 2c  cannot be both zero together. Nevertheless, both terms can be small in 
reality; e.g., if 0 0.5c = , then 1 0c =  and 2 0.083c = - . We can test whether the 
two terms with 1c  and 2c  in (10) are needed or not in the quadratic models: for 

( | )E D S , test for  
 

0 :H  0{ Sd-  slope in (A.2 1}c 2
0{ Sd+  slope in (A.2) 2} 0c = .  (11) 

 
The findings (8) to (11) include the findings in Dong (2015, p. 432, (8)) as a 

special case, when 0 0c =  in our notation and 4 0c =  in the Dong’s notation. 
Specifically, presenting (10) and ‘ ft ’ in Dong’s equation (8) together― 0c , 1c  and 

2c  are defined as the slopes of d , 0Sd  and 2
0Sd  for ( | )E Y S  in Dong (2015)―

gives two same entities: 
 

2
0 0

2
0 0

{ slope in (A.3)} ( slope) / 2 { slope) / 6
{ slope in (A.2)} ( slope) / 2 { slope) / 6

S S

S S

d d d
d d d

- +
- +

 and  

0 1 2

0 1 2

( / 2) ( / 6)
( / 2) ( / 6)f

c c c

s s s
t - +

=
- +

. 

 
2.3. OLS and IVE instead of Two-Step Estimators  

 
Dong’s (2015) two-stage estimators―(9) for the linear model and (10) for the 

quadratic model (and their generalizations for higher-order models)―are 
cumbersome to implement, and Dong (2015) proposed bootstrap inference for the 
two-stage estimators. The source for the complication is using (6)(ii) and (7)(ii), 
instead of (6)(i) and (7)(i). Here, we show that single-step OLS for SRD and IVE 
for FRD are enough to estimate db  in (3), using (6)(i) and (7)(i).  

For SRD with D d=  and g b= , still without the cutoff sample, (7)(i) 
becomes  
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0 1 0.5 1 0.5( | ) c cE Y S S Sd db b d b b d= + + + , 0.5 0 00.5 0.5cS S c S cº + - = + - . (12) 

 
For this, we can just do the OLS of Y  on ( 0.5 0.51, , ,c cS Sd d ) without the cutoff 
sample, where the slope of d  is consistent for db . Instead of insisting on using 
the “natural regressors” ( 0 0,S Sd ) as in (6)(ii) and (7)(ii), using the “transformed 
regressors” ( 0.5 0.5,c cS Sd )as in (6)(i) and (7)(i) leads to a big simplification. 

For FRD, we can obtain the Wald estimator using (6)(i) and (7)(i) with the 
regressors ( 0.5 0.51, , ,c cS Sd d ), but using ‘IVE=Wald’ is simpler because we can do 
the IVE of Y  on ( 0.5 0.51, , ,c cD S Sd ) with ( 0.5 0.51, , ,c cS Sd d ) as the IV without the 
cutoff sample. For both OLS for SRD and IVE for FRD, inference can be done with 
the usual OLS and IVE asymptotic variance estimators―no need for bootstrap. The 
OLS and IVE for the quadratic model (4) will appear shortly.  

 
 

III. Measurement Error Distribution Tests  
 
In (12) for SRD without the cutoff sample, the left and right slopes are 1b  and 

1 1db b+ , which can be rewritten as  
 

0 0 0.5 0.5( | , 0) d c cE Y S S S Sb b d b d b d+ - - + +¹ = + + +    (13) 

where 01[ 1]Sd- º £ - , 01[1 ]Sd+ º £  and 0 01[ 0]Sd º = .  (14) 

 
In (13), the left and right slopes are b-  and b+ ; i.e., 1b b- =  and 

1 1db b b+ = + 1db b-= + , so that 1db b b+ -= - . 
Let ,1

ˆ
olsb  be the OLS for (13) of Y  on  

 

1 0.5 0.5(1, , , )c cW S Sd d d+ - + ¢º  for 0( , , , )db b b b b- + ¢º   (15) 

 
without the cutoff sample. Our test for [0,1]e U:  in SRD is based on the next 
equation that is proven in the appendix:  
 

2 2
0 0 0 0 0( | 0) (1 ) ( 0.5 ) 0.5(1 )dE Y S c c cb b b b- += = + - + - + -  under  

[0,1]e U S: C . (16) 

 
Differently from (8) and (9) requiring only ( ) 0.5E e =  in the linear model and (10) 
and (11) requiring ( ) 0.5E e =  and ( ) 1 / 3E e =  in the quadratic model, (16) 
makes use of the assumption [0,1]e U:  fully in the linear model.  

The moment in (16)gives a method-of-moment test statistic: with 0 01[ 0]Sd º = ,  
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1 ,1

1 ˆ( , )i ols
i

m Y
N

bå ,  

2 2
1 0 0 0 0 0( , ) { (1 ) ( 0.5 ) 0.5(1 ) }dm Y Y c c cb d b b b b- +º - - - - - - - . (17) 

 
Since the cutoff sample is not used in obtaining ,1

ˆ
olsb , we can test for e :

[0,1]U SC  with 1{ ( , )} 0E m Y b =  by plugging in 0c  and ,1
ˆ

olsb . 
Taking into account the first-stage error as in Lee (2010, p. 109), the appendix 

shows that the test statistic is asymptotically normal with the variance estimable by  
 

2 2
1 ,1 1 1 ,1 1 ,1 1

1 1ˆ ˆ ˆˆ( , ) ( , ) ( , )i ols i i ols i i ols
i i

m Y p C Y Y C
N N

b h b h b¢ ¢+å å  

where 2 2
1 0 0 0{1,1 , 0.5 , 0.5(1 ) }C c c c ¢º - - - , 0

1ˆ 1[ 0]i
i

p S
N

º =å , 

1

1 ,1 0 1 1 0 1 1 ,1

1ˆ ˆ( , ) 1[ 0] 1[ 0] ( )i i ols i i i i i i i ols
i

Y S W W S W Y W
N

h b b
-

æ ö¢ ¢º ¹ × ¹ -ç ÷
è ø

å . (18) 

 
For FRD, do the test with Y  replaced by D , as the relationship between d  

and Y  in SRD is analogous to that between d  and D  in FRD. Denoting the 
OLS of D  on 1W  as ,1

ˆ
olsa , the FRD test statistic is 1/2

1 ,1
ˆ( , )i i olsN m D a- å  with 

the variance estimator  
 

2 2
1 ,1 1 1 ,1 1 ,1 1

1 1ˆ ˆ ˆ ˆ( , ) ( , ) ( , )i ols i i ols i i ols
i i

m D p C D D C
N N

a h a h a¢ ¢+å å . 

 
Differentiating 1( , )m Y b  with respect to 0c  gives  
 

1
0 0 0 0 0

0

( , )
{ (1 ) { ( ) }d d

m Y
c c c

c

b d b b b d b b b b- + + - +

¶
= + + - = + + -

¶
.  (19) 

 
If 0( ) 0d cb b b b+ - ++ + - <  and if the test statistic value is negative, then 0c%  that 
would make the test statistic zero is smaller than 0c  as if the treatment eligibility 
had started earlier. This situation seems to have occurred in our empirical analysis 
below where 0 0.5c =  and Y  is the dental expenditure of South Korean elders, 
because people can wait for many dental treatments. For example, if one needs an 
implant but is not qualified for a dental care support until age 70, then he/she 
would wait until age 70. The ability to wait makes late eligibility with 0c  as good 
as early eligibility with 0c% .  

Consider now a local quadratic version equivalent to (4) for SRD with D d= : 
2 2

0 2(1 )( ) ( ) (1 )( ) ( ) ;dY G c G c G c G c Ub b d b d b d b d b d- + -- ++= + + - - + - + - - + - +
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b--  is the left slope of the second order term, and b++  is the right slope. The 
appendix shows that, for SRD without the cutoff sample, do  

 

OLS ,2
ˆ

olsb  of Y  on 2 0.5 0.5 0 0(1, , , , , )c cW S S S Sd d d d d* *
+ - + - + ¢º  

where 2 2
0 0 0 0 0 0(1 2 ) (1 / 3)S S c S c c* º + - + - + .  (20) 

 
The moment condition to test for [0,1]e U:  uses (see the appendix again)  

 
3

2 2 0
2 0 0 0 0 0( , ) (1 ) ( 0.5 ) 0.5(1 )

3d

c
m Y Y c c cb d b b b b b- + --

ì
º - - - - - - - -í

î
 

3
0(1 )

3
cb++

ü-
- ý

þ
. (21) 

 
The asymptotic variance of 1/2

2 ,2
ˆ( , )i i olsN m Y b- å  can be estimated with  

 
2 2

2 ,2 2 2 ,2 2 ,2 2

1 1ˆ ˆ ˆˆ( , ) ( , ) ( , )i ols i i ols i i ols
i i

m Y p C Y Y C
N N

b h b h b¢ ¢+å å  

where 
2 2 3 3
0 0 0 0

2 0

(1 ) (1 )
1,1 , , , ,

2 2 3 3
c c c c

C c
¢ì ü- -

º - -í ý
î þ

, 

1

2 ,2 0 2 2 0 2 2 ,2

1ˆ ˆ( , ) 1[ 0] 1[ 0] ( )i i ols i i i i i i i ols
i

Y S W W S W Y W
N

h b b
-

æ ö¢ ¢º ¹ × ¹ -ç ÷
è ø

å . 

 
For FRD, the test statistics is 1/2

2 ,2
ˆ( , )i i olsN m D a- å  where ,2

ˆ
olsa  is the OLS of 

D  on 2W . The asymptotic variance can be estimated with  
 

2 2
2 ,2 2 2 ,2 2 ,2 2

1 1ˆ ˆ ˆ ˆ( , ) ( , ) ( , )i ols i i ols i i ols
i i

m D p C D D C
N N

a h a h a¢ ¢+å å .  

 
 

IV. One-Step OLS and IVE Using Cutoff Sample  
 
If ‘ [0,1]e U: ’ is not rejected, we can use all observations including the cutoff 

sample. Combining (14) and (16) gives (recall 0 01[ 0]Sd º = ), for local linear SRD,  

 
2

0 0 0 0 0 0.5( | ) {(1 ) } ( 0.5 )d cE Y S c c Sb b d d b d d+ - -= + - + + - +  
2

0 0 0.5{0.5(1 ) }cc Sb d d+ ++ - + .  (22) 
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Compared with (13) excluding 0d , all regressors in (22) have a 0d  component. 
‘ 0 0(1 )c d- ’ for db  makes sense, as the proportion of the treated in the cutoff 
sample is 01 c- .  

Based on (22), for the linear model in SRD, do the OLS of Y  on  
 

2 2
1 0 0 0 0 0.5 0 0 0.5{1, (1 ) , 0.5 , 0.5(1 ) }c c cW c c S c Sd d d d d d+ - + ¢º - + - + - + .  (23) 

 
For FRD, using 1cW  as an instrument for 1cX  next, do  

 
IVE of Y  on 2 2

1 0 0 0.5 0 0 0.5{1, , 0.5 , 0.5(1 ) }c c cX D c S c Sd d d d- + ¢º - + - + .  (24) 

 
Because four parameters are estimated in the OLS and IVE, at least four or five 
support points ( 0, 1, 2S = ± ± ) should be used.  

For the quadratic model in SRD, recalling 0S*  in (20), do  
 

OLS of Y  on 2
2 0 0 0 0 0.5{1, (1 ) , 0.5 ,c cW c c Sd d d d+ -º - + - +  

3 3
2 0 0

0 0 0.5 0 0 0 0

(1 )
0.5(1 ) , , }

3 3c

c c
c S S Sd d d d d d* *

+ - +

- ¢- + + + . (25) 

 
This OLS is based on an equation analogous to (22), which is derived in (A.9) of 
the appendix. For FRD, using 2cW  as instruments for 2cX  next, do  

 
IVE of Y  on 2

2 0 0 0.5{1, , 0.5 ,c cX D c Sd d-º - +  
3 3

2 0
0 0 0.5 0 0 0 0

(1 )
0.5(1 ) , , }

3 3c

c c
c S S Sd d d d d d* *

+ - +

- ¢- + + + .  (26) 

 
The above OLS and IVE with non-integer .are improvements on Dong’s (2015) 

two-step procedures using (9) and (10) in two aspects. First, Dong (2015) proposed 
bootstrap inference after obtaining the estimates using (9) and (10), but the OLS 
and IVE inferences are much easier. Second, the cutoff sample is used to enhance 
the efficiency. If 5 integers ( 0, 1, 2S = ± ± ) are used with the sample sizes similar 
across the integers, then we get to use about 100×1/5=20% more observations with 
the cutoff sample added, which translates into a standard deviation (SD) reduction 
by  

 
1/2 1/2

1/2
1/2

(1.2 ) ( )
100 100 {(1.2) 1} 9.5%

( )
N N

N
-

= ´ - = . 

 
as the SD declines at the 1/2N -  rate. With 7 integers ( 0, 1, 2, 3S = ± ± ± ), we use 
100×1/7=14% more observations, which translates into a 6.8% reduction in SD. 
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V. Simulation Study  
 
Our base simulation design is a FRD: with 5000 repetitions and (0,1)e U: ,  
 

c = 0.5, 0.2, 0.5, 0.7 (implying 0c c=  and 0S S= , due to 0c =ê úë û )  

N = 2500, 5000 for 0, 1, 2S = ± ±  and N = 3500, 7000 for 0, 1, 2, 3S = ± ± ± , 

1[ ] 500 50i
i

S s s= = -å  (×2 for N = 5000, 7000) with 0, 1, 2, 3s = ± ± ± ,  

(1 )1[ 0.5] 1[ 0.5]D V Vd d= - < - + > - , (0,1) ( , )V N e S: C , 1[ ]c Gd = £ , 

0 (1 )( ) ( ) (0,1)dY D G c G c V Nb b b d b d- += + + - - + - + + , 

0.5b- = , 0 1db b b+= = = . 

 
In the design with birth year in mind for S , we set the number of observations 

for each support point s  to decline as s  increases, as the number of births has 
been declining in developed countries; e.g., they are 600, 550, ..., 400 for 2, 1,S = - -

,2K  for 2500N = . We set c = 0.05, 0.2, 0.5 and 0.7,as similar cutoffsoccur in 
reality. For instance, school starts on March 1 in South Korea ( 1 / 6 0.17c = = ), on 
April 1 in Japan ( c = 0.25), and often on September 1 in the U.S.A. ( c = 0.67). The 
reason for c = 0.05 is to see a large efficiency gain in using the cutoff sample as 
follows.  

It is likely that the efficiency gain in using the cutoff sample becomes greater as 
c  approaches 0 or 1 because 0,1c ;  means that the cutoff sample could have 
been used without ambiguity even when only S  is observed. The opposite is likely 
to hold; i.e., the efficiency gain is likely to be minimal when c = 0.5 so that the 
ambiguity of the cutoff sample treatment status is at its maximum.  

 
[Figure 1] Four Density Functions with Flat Line for [0,1]U  
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To see how robust the estimators are to violations of [0,1]e U: , we try three 
non-uniform distributions: (i) e  has an asymmetric density linearly increasing 
from 0.5 to 1.5, (ii) (2,2)e Beta:  whose density is symmetric about 0.5 and 
proportional to (1 )e e- , going up and down with a peak of 1.5 at 0.5,and (iii) e :

(0.5,0.5)Beta  whose density is symmetric about 0.5 and proportional to
0.5 0.5(1 )e e- -- , going down and up. All three distributions are highly non-uniform; 

particularly e : (0.5,0.5)Beta  is extremely so, because its density is unbounded at 
either end. Note that both Beta distributions have mean 0.5. The three non-uniform 
distributions are dubbed, respectively, “Inc 0.5-1.5”, “QuadPeak”, and “DownUp” 
in the simulation tables below. Figure 1 plots the four density functions. 

In each entry of all tables below, Bias, SD, and Root mean squared error (Rmse) 
are presented. In each table, four panels for c = 0.05, 0.2, 0.5 and 0.7 are provided. 
‘NAIVE’ is the IVE ignoring the integer nature of S ; i.e., NAIVE is the IVE of Y  
on 0 0{1, ,(1 ) , }D S Sd d-  with 0 0{1, ,(1 ) , }S Sd d d-  as the IV. ‘ IVEc ’ is the IVE in 
(24) which uses the cutoff sample, ‘ IVEnc ’ is the same as IVEc  except that the 
cutoff sample is dropped, and ‘P(Reject)’ is the rejection proportion of the uniform 

 
[Table 1] Bias, SD & Rmse and Test for Linear Model ( N = 2500)  
 

 [0,1]U  Inc 0.5-1.5 QuadPeak DownUp 
c = 0.05 

NAIVE 0.60 0.56 0.82 0.45 0.56 0.72 0.59 0.57 0.82 0.60 0.58 0.83 
IVEnc  -0.03 0.61 0.61 -0.17 0.62 0.64 -0.06 0.63 0.63 -0.04 0.63 0.64 

IVEc  0.01 0.36 0.36 -0.17 0.54 0.57 0.00 0.34 0.34 0.02 0.41 0.41 
P(Reject) 0.05 0.61 0.06 0.11 

c = 0.2 
NAIVE 0.40 0.56 0.69 0.24 0.56 0.61 0.41 0.56 0.69 0.39 0.57 0.69 
IVEnc  -0.02 0.59 0.59 -0.17 0.60 0.62 -0.03 0.60 0.60 0.00 0.59 0.59 

IVEc  0.01 0.43 0.43 -0.09 0.58 0.59 -0.01 0.39 0.39 0.06 0.49 0.49 
P(Reject) 0.05 0.47 0.13 0.14 

c = 0.5 
NAIVE -0.01 0.57 0.58 -0.14 0.55 0.57 0.00 0.56 0.56 0.00 0.56 0.56 
IVEnc  -0.01 0.57 0.58 -0.14 0.55 0.57 0.00 0.56 0.56 0.00 0.56 0.56 

IVEc  0.00 0.57 0.57 -0.12 0.56 0.57 0.00 0.55 0.55 0.02 0.56 0.56 
P(Reject) 0.05 0.14 0.05 0.05 

c = 0.7 
NAIVE -0.29 0.56 0.63 -0.41 0.57 0.70 -0.28 0.57 0.63 -0.27 0.57 0.63 
IVEnc  0.02 0.55 0.55 -0.13 0.56 0.57 0.00 0.55 0.55 0.01 0.57 0.57 

IVEc  -0.01 0.51 0.51 -0.18 0.52 0.55 0.00 0.49 0.49 -0.04 0.56 0.56 
P(Reject) 0.05 0.06 0.14 0.11 

Note: 0c =ê úë û , 0, 1, 2, 3S = ± ± ± ; Inc 0.5-1.5, ( ) 0.5f e e= + ; QuadPeak ( ) (1 )f e e eµ - ; 
DownUp, 0.5 0.5( ) (1 )f e e e- -µ - ; NAIVE, ignoring integer; IVEnc , IVE without cutoff 
sample; IVEc , IVE with cutoff sample; P(Reject), test rejection proportion.  
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distribution test for e  in (20) with 1.96±  as the critical values.  
Table 1 is for 0, 1, 2S = ± ±  so that N = 2500, because each integer point has 

about 500 observations. In the first and second panels for c = 0.05 and c = 0.2, 
NAIVE is higher biased in all cases. IVEc  using the cutoff sample has much lower 
Rmse’s than IVEnc , which was expected because c  is close to 0.Both IVEnc  and 
IVEc  are much biased for the asymmetric distribution Inc 0.5-1.5, but hardly 
biased for the other distributions. The test has the correct size 0.05 for [0,1]U , and 
rejects the asymmetric non-uniform distribution far more easily than the two Beta 
distributions. 

In the third panel for c = 0.5, NAIVE=IVEnc ; IVEc  as if the cutoff sample is 
uninformative when c = 0.5, which also agrees with our intuition mentioned above. 
The near zero biases for c = 0.5 in the three symmetric distributions con.rm the no-
bias condition (8). The test fails to reject the Beta distributions, which is not 
necessarily bad because the estimates are almost unbiased for the Beta distributions. 
In the fourth panel for c = 0.7, the findings are similar to those in the second panel  

 
[Table 2] Bias, SD & Rmse and Test for Linear Model ( N = 5000)  
 

 [0,1]U  Inc 0.5-1.5 QuadPeak DownUp 
c = 0.05 

NAIVE 0.59 0.39 0.71 0.44 0.39 0.59 0.60 0.38 0.71 0.59 0.38 0.70 
IVEnc  -0.01 0.42 0.42 -0.18 0.43 0.47 -0.02 0.42 0.42 -0.01 0.42 0.42 

IVEc  0.00 0.25 0.25 -0.20 0.37 0.42 0.00 0.23 0.23 0.01 0.28 0.28 

P(Reject) 0.05 0.89 0.07 0.16 
c = 0.2 

NAIVE 0.39 0.38 0.55 0.26 0.38 0.46 0.39 0.39 0.55 0.40 0.39 0.56 
IVEnc  -0.01 0.40 0.40 -0.16 0.42 0.45 -0.02 0.41 0.41 -0.02 0.41 0.41 

IVEc  0.01 0.30 0.30 -0.12 0.39 0.41 -0.01 0.28 0.28 0.03 0.34 0.34 

P(Reject) 0.05 0.75 0.21 0.21 
c = 0.5 

NAIVE 0.01 0.39 0.39 -0.15 0.39 0.42 -0.01 0.39 0.39 0.00 0.39 0.39 
IVEnc  0.01 0.39 0.39 -0.15 0.39 0.42 -0.01 0.39 0.39 0.00 0.39 0.39 

IVEc  0.00 0.38 0.38 -0.14 0.39 0.42 -0.01 0.39 0.39 0.01 0.38 0.38 

P(Reject) 0.05 0.24 0.05 0.05 
c = 0.7 

NAIVE -0.27 0.39 0.47 -0.41 0.40 0.57 -0.27 0.39 0.48 -0.27 0.40 0.48 
IVEnc  0.01 0.39 0.39 -0.14 0.39 0.41 0.00 0.38 0.38 0.00 0.38 0.38 

IVEc  0.00 0.36 0.36 -0.17 0.36 0.40 0.00 0.33 0.33 -0.04 0.38 0.38 

P(Reject) 0.05 0.07 0.23 0.17 
Note: 0c =ê úë û , 0, 1, 2, 3S = ± ± ± ; Inc 0.5-1.5, ( ) 0.5f e e= + ; QuadPeak ( ) (1 )f e e eµ - ; 

DownUp, 0.5 0.5( ) (1 )f e e e- -µ - ; NAIVE, ignoring integer; IVEnc , IVE without cutoff 
sample; IVEc , IVE with cutoff sample; P(Reject), test rejection proportion. 
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for c = 0.2, except for the test not rejecting Inc 0.5-1.5 despite the large bias 
magnitudes.  

In Table 2, the sample size doubles at each support point. The findings in Table 
2 are almost the same as those in Table 1, except that the Bias’s, SD’s and Rmse’s 
are mostly smaller than in Table 1 due to the larger sample size. Also, the rejection 
proportions are either the same or higher than in Table 1, except for [0,1]e U: . 

Table 3 uses 7 support points 0, 1, 2, 3S = ± ± ± , each with about 500 
observations so that N = 3500, and the quadratic model with b-- = 0.05 and 
b++ = 0.2 is estimated as well; to keep the table from becoming too long, we omit 
the case c = 0.05. Other than these, the simulation designs are the same as those for 
Tables 1 and 2. There are two more estimators compared in Table 3: IVEncq  and 
IVEcq , which are the quadratic-model versions of IVEnc  and IVEc . Also 
P(Reject) presents two rejection proportions of the linear- and quadratic-model tests  

 
[Table 3] Bias, SD & Rmse and Test for Quadratic Model ( N = 3500) 
 

 [0,1]U  Inc 0.5-1.5 QuadPeak DownUp 
c = 0.2 

NAIVE -0.45 0.21 0.49 -0.53 0.22 0.57 -0.45 0.21 0.50 -0.44 0.22 0.49 
IVEnc  -1.15 0.24 1.17 -1.22 0.25 1.24 -1.15 0.24 1.17 -1.14 0.24 1.17 

IVEc  -0.60 0.18 0.63 -0.79 0.22 0.82 -0.57 0.16 0.59 -0.63 0.20 0.66 

IVEncq  -0.04 0.72 0.72 -0.09 0.74 0.74 -0.04 0.71 0.71 -0.02 0.73 0.73 

IVEcq  0.01 0.38 0.38 -0.02 0.60 0.60 -0.01 0.33 0.33 0.06 0.46 0.46 

P(Reject) 0.05, 0.05 1.00, 0.69 0.65, 0.20 0.58, 0.19 
c = 0.5 

NAIVE -0.69 0.21 0.72 -0.76 0.22 0.79 -0.70 0.21 0.73 -0.68 0.22 0.72 
IVEnc  -0.69 0.21 0.72 -0.76 0.22 0.79 -0.70 0.21 0.73 -0.68 0.22 0.72 

IVEc  -0.62 0.21 0.66 -0.70 0.22 0.73 -0.64 0.21 0.67 -0.61 0.21 0.65 

IVEncq  0.01 0.60 0.60 -0.07 0.62 0.62 0.01 0.60 0.60 0.00 0.62 0.62 

IVEcq  0.00 0.59 0.59 -0.05 0.62 0.62 -0.01 0.59 0.59 0.02 0.61 0.61 

P(Reject) 0.05, 0.05 0.54, 0.26 0.05, 0.04 0.04, 0.05 
c = 0.7 

NAIVE -0.83 0.22 0.86 -0.88 0.22 0.91 -0.83 0.21 0.86 -0.82 0.22 0.85 
IVEnc  -0.40 0.21 0.45 -0.48 0.21 0.52 -0.42 0.20 0.46 -0.39 0.21 0.45 

IVEc  -0.53 0.21 0.57 -0.61 0.21 0.64 -0.52 0.19 0.55 -0.54 0.21 0.58 

IVEncq  0.01 0.58 0.58 -0.08 0.61 0.62 0.01 0.59 0.59 0.03 0.61 0.61 

IVEcq  -0.02 0.52 0.52 -0.12 0.53 0.54 0.00 0.46 0.46 -0.02 0.58 0.58 

P(Reject) 0.05, 0.05 0.12, 0.07 0.57, 0.23 0.39. 0.19 
Note: 0, 1, 2, 3S = ± ± ± ; Inc 0.5-1.5, ( ) 0.5f e e= + ; QuadPeak ( ) (1 )f e e eµ - ; DownUp, 

0.5 0.5( ) (1 )f e e e- -µ - ; NAIVE, ignoring integer; IVEnc , IVE without cutoff sample; 
IVEc , IVE with cutoff sample; IVEncq  & IVEcq , quadratic model versions of IVEnc  
& IVEc ; P(Reject), rejection proportion of test (linear, quad.).  
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in (17) and (21). We omit the simulation for the quadratic model with each integer 
point having about 1000observations, because what can be learned from this relative 
to Table 3 is similar to what was learned from Table 2 relative to Table 1. 

The first panel for c = 0.2 shows that, compared with IVEncq  and IVEcq , 
IVEnc  and IVEc  are heavily biased although their SD’s are much smaller. 
NAIVE is also much biased, although to a lesser degree than IVEnc  and IVEc . 
Both tests have almost correct sizes, but the power is lower in the quadratic model 
test, which is not necessarily bad because the biases are much lower in IVEncq  and 
IVEcq . In the second panel for c = 0.5, we have NAIVE=IVE IVEnc c;  and 
IVEncq IVEcq;  as in the panel for c = 0.5 in Tables 1 and 2. NAIVE, IVEnc  and 
IVEc  are all much biased with smaller SD’s as in the first panel for c = 0.2. Also, 
the power is lower for the quadratic model test as in the first panel. The tests fail to 
reject the two Beta distributions.  

In the third panel for c = 0.7, differently from c = 0.2 and c = 0.5, NAIVE is far 
more biased than IVEc , which is in turn more biased than IVEnc  whereas the 
SD’s of NAIVE, IVEnc  and IVEc  are similar. This shows that using the cutoff 
sample does not always result in improvements, if the model is misspecified by 
omitting the quadratic terms, which makes 0( | 0)E Y S =  also misspecified as (A.6) 
and (A.8) in the appendix show for the linear and quadratic models. Differently 
from IVEc  relative to IVEnc , however, IVEcq  does better than IVEncq . Again, 
the quadratic-model test rejects less than the linear-model test, which is not 
necessarily bad because the quadratic model estimators are hardly biased under the 
Beta distributions. Comparing IVEncq  and IVEcq  with c = 0.5, there is some 
gain in using the cutoff sample when c = 0.7: our conjecture on efficiency gain in 
using the cutoff sample is borne out also in Table 3.  

To understand why the test power varies across [0,1]U and the two Beta 
distributions as c  changes, examine the following from the appendix proof for 
(16): with b- = 0.5 and 0 1db b b+= = =  in the simulation design,  

 

0 0 0 0 0( | 0) ( | 0, 0) ( ) ( | 1, 0) ( )E Y S E Y S P e c E Y S P e cd d= = = = < + = = >   

0 0 0 0 0 0 0{ ( | ) } ( ) [ { ( | ) }] ( )dE e e c c P e c E e e c c P e cb b b b- += + < - < + + > - >   

0 0 0 0 0 01 0.5{ ( | ) } ( ) [1 ( | ) } ( )E e e c c P e c E e e c c P e c= + < - < + + > - > .  (27) 

 
(27) reveals how the differences across the distributions for the test came about: as 
the test used (27) with the moments and probabilities obtained under [0,1]U , the 
test power depends on how different the moments and probabilities are under the 
Beta distributions. For this, Table 4 presents 0( )P e c< , 0( | )E e e c<  and ( |E e e

0 )c>  in the left column with c = 0.05, 0.2 and 0.5 for the three distributions, and 
then shows (27) minus 1in the right column. 
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[Table 4] Differences for Test Moment (3.4) across Three Distributions  
 

 P( 0e c< ), E( 0|e e c< ), E( 0|e c e< ) (5.1) minus 1 

c = 0.05 
[0,1]U  0.05 0.03 0.53 0.5(0.03-0.05)0.05+(1+0.53-0.05)0.95=1.41 

QuadPeak 0.01 0.03 0.51 0.5(0.03-0.05)0.01+(1+0.51-0.05)0.99=1.45 
DownUp 0.15 0.02 0.58 0.5(0.02-0.05)0.15+(1+0.58-0.05)0.85=1.30 

c = 0.2 
[0,1]U  0.20 0.10 0.60 0.5(0.10-0.20)0.20+(1+0.60-0.20)0.80=1.11 

QuadPeak 0.10 0.13 0.54 0.5(0.13-0.20)0.10+(1+0.54-0.20)0.90=1.20 
DownUp 0.30 0.07 0.68 0.5(0.07-0.20)0.30+(1+0.68-0.20)0.70=1.02 

c = 0.5 
[0,1]U  0.50 0.25 0.75 0.5(0.25-0.50)0.50+(1+0.75-0.20)0.50=0.71 

QuadPeak 0.50 0.31 0.69 0.5(0.31-0.50)0.50+(1+0.69-0.20)0.50=0.70 
DownUp 0.50 0.18 0.82 0.5(0.18-0.50)0.50+(1+0.82-0.20)0.50=0.73 

Note: 0, 1, 2S = ± ± ; QuadPeak ( ) (1 )f e e eµ - ; DownUp, 0.5 0.5( ) (1 )f e e e- -µ - . 

 
First, for c = 0.05, the values of (27)-1 in Table 4 explain why the test power 

under DownUp was about twice as high as that under QuadPeak in Tables 1 and 2: 
1.41 for [0,1]U  is 0.11 apart from 1.30 for DownUp, but only 0.04 apart from 1.45 
for QuadPeak. Second, for c = 0.2, the value 1.11 for [0,1]U  is equally apart (by 
0.09) from 1.20 and 1.02 for QuadPeak and DownUp, explaining why the test 
power was almost the same for QuadPeak and DownUp in Tables 1 and 2. Third, 
for c = 0.5, the value 0.71 for [0,1]U  little differs from 0.70 and 0.73 for QuadPeak 
and DownUp, explaining why the power was so low in Tables 1 and 2 when c =
0.5. Analogous analyses can be done for c = 0.7and for Table 3, which are omitted. 

 
 

VI. Empirical Analysis  
 
The National Health Insurance Service in South Korea expanded its dental 

support program coverage for denture and dental implant on July 1, 2015, to the 
elderly of age 70 or above, whereas the existing age cutoff used to be 75. It was 
expected that about 100,000 to 120,000 elders would bene.t by paying about $1000 
less per year for the covered dental treatments that would cost about $1600 if not for 
the program.  

We use the 2016 wave from ‘the Korea Longitudinal Study of Aging’ for the 2015 
information with N = 7089 to assess the effects of the dental support program 
extension D  on the 2015 dental expenditure Y  in 10,000 Korean Won (a little 
less than $10). This is a SRD, as there is no exception for the qualification condition 
based on age. Since 0c = 0.5 for July 1, if the linear model (3) holds, then there 
should be no bias even if we use .0 with its integer nature ignored due to the no-bias 
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condition (8).  
Table 5 provides descriptive statistics for Y  and S , along with those for 

covariates on gender, marital status, household income, smoking, drinking, and 
education. For each value of 0S , there are about 200 persons: 

 

0S  (born 19xx) : –3(48) –2(47) –1 (46)  0 (45)  1 (44)  2 (43)  3 (42) 

# individuals :    212   205    208    182    176    188   215 
 

For example, there are 182 persons born in 1945 with 0S = 0. 
We provide effect estimates with the covariates uncontrolled first and controlled 

later, but as it turns out, controlling the covariates makes little difference. In our 
data with birth time G , we have 1[ 1945.5]D G= £ . To make this fit our 
framework with 1[ ]D c G= £ , we transform the birth year S  into 0 (S S= - -
1945) ; e.g., 0 1S = -  if S = 1946, and 0S = 2 if S = 1943. Note that, differently 
from 0S S cº - ê úë û  in the previous sections, now 0 ( )S S cº - - ê úë û  to reverse the 
inequality direction in G c£ .  

The cutoff c  varies across individuals in the cutoff sample, because persons 
reaching age 70 on a date after July 1, 2015, become treated on the date and onwards. 
However, since Y  is the dental expenditure in 2015, those cutoff-sample 
individuals who become eligible later than July 1 are only partly treated, compared 
with the fully treated persons who become eligible exactly on July 1. This case 
differs from the usual RD where individually are fully treated with different cutoffs. 
That is, our RD case with an individually varying cutoff is unusual, because 
individuals in the cutoff sample are partially treated to different degrees.  

Another unusual aspect in our RD case is that dentures and implants can wait for 
several months, which means that those who are partly treated may be almost as 
good as fully treated if they wait until they become eligible in 2015. Indeed, Figure 2 
plotting ( | )E Y S  for birth years S = 1940: 1950 reveals this feature. Figure 2 
presents two linearly fitted lines to the right and left of the cutoff sample dot for 
birth year 1945, where a clear break of magnitude greater than 30 is seen at birth 
year 1945; the 1945 data were not used for the linear line estimation. Although we 

 
[Table 5] Descriptive Statistics of Variables ( N = 7089)  
 

Variable Mean (SD) Min, Max Variable Mean (SD) 
dental expenditure Y  24.0 (118) 0, 2200 smoking 0.11 (0.31) 
age in years (for S ) 66.8 (10.3) 52, 106 drinking 0.34 (0.48) 

male 0.43 (0.49)  elementary school 0.38 (0.49) 
married 0.77 (0.42)  middle school 0.16 (0.37) 

household income 3101 (2692) 0, 35000 high school 0.34 (0.47) 
(median income) 2400  college or higher 0.11 (0.32) 

Note: Y , income in $10; ; Min, Max omitted for dummy; education dummy for completion. 
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[Figure 2] 2015 Mean Dental Expenditure for Each Birth Year Cohort  
 

 
 
expected the 1945 dot to be somewhere vertically in the middle, it actually is as low 
as the dots for earlier birth years 1944-1940 as if the cutoff sample were fully treated. 
That is, despite 0c = 0.5, the “de facto” 0c  could have been much earlier, because 
individuals could have waited within 2015 until their eligibility date, postponing the 
requisite dental treatment to get fully treated in essence.  

Viewed more broadly, the real treatment variable may be the continuous waiting 
time until D  is taken as in Angelov et al. (2019), but we do not entertain this 
general yet complicating view in this section, as it goes beyond the scope of the 
current paper.  

The possibility for waiting until becoming eligible raises an intriguing possibility: 
even if G  were available, using G  might lead to a worse finding, because the 
actual c  is ambiguous. That is, using S  might be preferred in this kind of 
unusual RD cases with an ambiguous actual cutoff. To explore this possibility, in 
our empirical result tables below, we try OLS with 0c = 0, because 0c = 0 
corresponds to everybody born in 1945 getting fully treated. These unusual aspects 
in our empirical example―partial treatment and ambiguity of the de facto c  due 
to waiting―deserve to be fully addressed, but we eschew them, as they also go 
beyond the scope of the current paper.  

Table 6 presents the estimation results without controlling covariates. ‘ OLSnc ’ is 
the linear-model OLS without the cutoff sample, whereas ‘ OLSc ’ is the linear 
model OLS with the cutoff sample; b-  and b+  are the slope estimates from 
OLSc . ‘ 0OLSc ’ is the OLSc  under the assumption 0c = 0 as if the treatment had 
started on January 1, 2015. ‘ts’ is the moment test statistic value for the linear model. 
‘ts(pv)-sym’ is the 2

1c . Wald test statistic value (and its p-value) for b b- +=  in 
the linear model. ‘ OLSncq ’, ‘ OLScq ’, ‘ 0OLScq ’, ‘ tsq ’ and ‘ tsq (pv)-sym’ are 
analogously defined for the quadratic model; b- , b+ , b--  and b++  are the 
slope estimates from OLScq .  
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[Table 6] Effect Estimate (t-value) & Test Statistic (covariate uncontrolled) 
 

( )hh N  2h = (959) 3h = (1386) 4h = (1812) 5h = (2217) 

OLSnc  -36.7 (-1.2) -31.6 (-1.4) -34.6 (-2.2) -34.2 (-2.6) 

OLSc  -39.3 (-1.3) -32.4 (-1.5) -35.4 (-2.3) -35.0 (-2.6) 

b-  3.19 (0.28) -2.35 (-0.29) 2.55 (0.65) 4.26 (1.6) 

b+  6.76 (0.86) 7.20 (1.5) 4.13 (1.6) 2.28 (1.2) 

0OLSc  -35.4 (-1.8) -29.6 (-1.9) -33.0 (-2.7) -33.0 (-3.0) 
moment ts -1.65 -1.06 -1.99 -2.50 
ts(pv)-sym 0.17 (0.68) 1.67 (0.20) 0.17 (0.68) 0.54 (0.46) 

OLSncq   -44.8 (-0.83) -30.5 (-0.79) -33.8 (-1.2) 

OLScq   -49.7 (-0.90) -31.6 (-0.80) -34.9 (-1.2) 

b-   8.78 (0.24) -12.5 (-0.56) -7.80 (-0.52) 

b+   17.26 (0.60) 15.5 (0.98) 14.3 (1.4) 

b--   2.80 (0.29) -3.29 (-0.77) -2.17 (-0.90) 

b++   -2.48 (-0.35) -2.56 (-0.85) -2.20 (-1.3) 

0OLScq   -40.9 (-1.6) -29.0 (-1.3) -31.5 (-1.7) 

moment tsq   -1.69 -0.69 -0.89 

tsq (pv)-sym  0.12 (0.73) 0.01 (0.91) 0.00 (0.99) 

Note: hN , sample size for bandwidth h ; OLSnc , linear-model OLS w/o cutoff sample; 
OLSc , linear-model OLS with cutoff sample; b- , b+  from OLSc ; 0OLSc , linear-
model OLS with 0 0c = ; moment ts, moment test statistic; ts(pv)-sym, test statistic (p-
value) for b b- += ; OLSncq , OLScq , 0OLScq , tsq , tsq (pv)-sym for quadratic model; 
b- , b+ , b-- , b++  from OLScq . 

 
The effect estimates from the linear model are insignificant for the localizing 

band­width h = 2. 3, but become significant for h = 4. 5; the effect magnitude is 
fairly stable around –32∼–39 (i.e., –$320∼–$390) as Figure 2 indicates. The 
slope estimates for b-  and b+  look insignificant for all h  values. Also, 0OLSc  
with 0c = 0 is simi­lar to OLSnc  and OLSc  Somewhat disappointingly, OLSc  
hardly differs from OLSnc  with rather small efficiency gains, which is likely due to 

0c = 0.5. None of the slope symmetry test rejects.  
The linear model moment test is not-rejecting with h = 2. 3, but rejecting with 

h = 4. 5. Even when non-rejecting, the moment test statistic is negative with a fairly 
large magnitude, which seems to be due to the aforementioned reason that dental 
procedures can wait several months. That is, the cutoff sample elders seem to have 
waited until they became eligible for D , which is equivalent to having c  lower 
than its nominal value 0.5, as was noted in relation to (19).  

For the quadratic model, the effect estimates are insignificant for all h  values; 
judging from the “erratic” b- , b+ , b--  and b++  estimates, the quadratic 
model seems over-specified. The moment test statistic values are all insignificantly 
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negative, and none of the slope symmetry test rejects for the quadratic model. 
Table 7 presents the effect estimates (t-values) with the eight covariates in Table 

5 controlled. Despite controlling the covariates, the results are remarkably similar to 
those in Table 6, which demonstrates the robustness of our findings in Table 6.  

 
[Table 7] Effect Estimate (t-value) & Test Statistic (covariates controlled) 
 

( )hh N  2h = (959) 3h = (1386) 4h = (1812) 5h = (2217) 

OLSnc  -40.2 (-1.3) -33.1 (-1.5) -35.7 (-2.3) -35.3 (-2.6) 

OLSc  -41.3 (-1.3) -33.4 (-1.5) -36.5 (-2.3) -36.2 (-2.7) 

0OLSc  -35.8 (-1.8) -30.5 (-1.9) -33.9 (-2.7) -34.1 (-3.1) 

OLSncq   -43.1 (-0.82) -30.5 (-0.78) -33.5 (-1.1) 

OLScq   -47.1 (-0.86) -31.1 (-0.78) -34.5 (-1.1) 

0OLScq   -40.5 (-1.5) -29.3 (-1.3) -32.0 (-1.8) 

 
 

VII. Conclusions  
 
Often in regression discontinuity (RD) with a cutoff c , the score (i.e., running 

variable) G  is observed only as its rounded-down integer S . If one proceeds as 
usual to use S  while ignoring the integer nature of S , then there occurs a bias in 
general. In the RD literature, two-step estimators for the treatment effect have been 
proposed under the assumption that the measurement error e G S= -  follows a 
known distribution (e.g., [0,1]U ). When c  is not an integer, the existing two-step 
indirect estimators do not use the “cutoff sample” (the sample with S  equalling 
the integer part of c ), because their treatment status is unclear.  

In this paper, we made a number of contributions. First, we generalized the 
existing RD identification findings with integer c  to those with any c  to show 
that c  may play an important role; e.g., the RD estimator bias due to using S  
instead of G  disappears if the fractional part 0c  of c  is 0.5 and the popular 
linear model is used. Second, when c  is not an integer, we use the cutoff sample 
to test for the distribution assumption on e , and if not rejected, the cutoff sample 
gets to be used in treatment effect estimation for an efficiency gain. Third, we 
showed that one-step OLS/IVE whose inference is straightforward is consistent for 
any c , integer or not, which is easier to implement than the two-step procedure 
and bootstrap inference suggested for integer c  in the literature.  
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Appendix 
 

Proof for (10)  
 
With 0S S c= + ê úë û , 0c c c= +ê úë û , 1( ) 0.5E e m= =  and 2

2( ) 1 / 3E e m= = ,  

 
2 2 2{( ) | } {( ) 2 ( ) | }E G c S E S e c S e c S- = + - + +   

2 2 2 2
1 2 1

1
2 2 2 (1 2 )

3
S S cS c c S c S c cm m m= + + - - + = + - + - +   

2 2
0 0 0 0 0

1
( ) (1 2 2 )( ) ( ) ( )

3
S c c c S c c c c c= + + - - + + - + + +ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û   

2 2
0 0 0 0 0

1
2 ( ) (1 2 2 )( )

3
S c S c c c S c c c= + + + - - + + - -ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û   

2 2 2 2
0 0 0 0 0 0 0

1
( ) 2 (1 2 )

3
c c c c S c S c c+ + + = + - + - +ê ú ê úë û ë û .  (A-1) 

 
Consider the quadratic versions of (5):  
 

2 2
0 1 1 2 2( | ) ( ) ( ) ( ) ( )dE D G G c G c G c G cd da a d a a d a a d= + + - + - + - + - , 

2 2
0 1 1 2 2( | ) ( ) ( ) ( ) ( )dE Y G D G c G c G c G cd dg g g g d g g d= + + - + - + - + - . 

 
For ( | )E D G , when 0 0S c S¹ Û ¹ê úë û , (A-1) gives  
 

0 1 0 0 1 0 0( | ) ( 0.5 ) ( 0.5 )dE D S S c S cda a d a a d= + + + - + + -  

2 2 2 2
2 0 0 0 0 0 2 0 0 0 0 0

1 1
(1 2 ) (1 2 )

3 3
S c S c c S c S c cda a dì ü ì ü+ + - + - + + + - + - +í ý í ý

î þ î þ
 

2
0 1 0 2 0 0

1 1
2 3

c c ca a aæ ö æ ö= + - + - +ç ÷ ç ÷
è ø è ø

2
1 0 2 0 0

1 1
2 3d c c cd da a a dì üæ ö æ ö+ + - + - +í ýç ÷ ç ÷

è ø è øî þ
 

2 2
1 2 0 0 1 2 0 0 2 0 2 0{ (1 2 )} { (1 2 )}c S c S S Sd d da a a a d a a d+ + - + + - + + .   (A-2) 

 
This makes da  equal to  
 

2 2
0 0 0 0 0 0 0

1 1 1
( slope) ( slope) ( slope) (1 2 )

2 2 3
S c S c c c cd d d ì üæ ö æ ö æ ö- - + - - - - +í ýç ÷ ç ÷ ç ÷

è ø è ø è øî þ
 

2 2 2
0 0 0 0 0 0 0

1 1 1
( slope) ( slope) ( slope) 2 2

2 2 3
S c S c c c cd d dæ ö æ ö= - - + - + - + -ç ÷ ç ÷

è ø è ø
 

2 2
0 0 0 0 0

1 1
( slope) ( slope) ( slope)

2 6
S c S c cd d dæ ö æ ö= - - + - +ç ÷ ç ÷

è ø è ø
. 
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The result analogous to (A-2) holds for dg  in the next ( | )E Y S , which then 
gives (10):  

 

2 2
0 1 0 2 0 0 1 0 2 0 0

1 1 1 1
( | )

2 3 2 3dE Y S c c c c c cd dg g g g g g dì üæ ö æ ö æ ö æ ö= + - + - + + + - + - +í ýç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è øî þ

 

2 2
1 2 0 0 1 2 0 0 2 0 2 0{ (1 2 )} { (1 2 )}c S c S S Sd d dg g g g d g g d+ + - + + - + + . (A-3) 

 
Proof for (16)  

 
(3)(i) for SRD with D d=  can be written as  
 

0 1(1 )( ) ( )dY G c G c Ub b d b d b d- += + + - - + - + . 

 
This gives  
 

0( | 0, ) { ( | 0, ) }E Y S c E G S c cd b b d-= = = + = = -ê ú ê úë û ë û ; 

0( | 1, ) { ( | 1, ) }dE Y S c E G S c cd b b b d+= = = + + = = -ê ú ê úë û ë û . (A-4) 

 
Because e  is uniform on any subinterval of (0.1), we have, as 0c c c= -ê úë û , 
 

0 0
0( | 0, ) ( | , )

2 2
c c

E G S c E S e e c S c c cd = = = + < = = + = -ê ú ê ú ê úë û ë û ë û  

0 0
0

1 1
( | 1, ) ( | , )

2 2
c c

E G S c E e e c S c c cd + -
= = = > = = + = +ê ú ê ú ê úë û ë û ë û . 

 
Substituting these into (A-4) renders  
 

0 0
0 0( | 0, )

2 2
c c

E Y S c c cd b b b b- -
æ ö æ ö= = = + - - = + -ê úë û ç ÷ ç ÷
è ø è ø

, 

0 0
0 0

1 1
( | 1, )

2 2d d

c c
E Y S c c cd b b b b b b+ +

- -æ ö= = = + + + - = + +ê úë û ç ÷
è ø

. (A-5) 

 
Because 0 0( 0| ) ( )P S c P e c cd = = = < =ê úë û  as [0,1]e U S: C ,  

 

0( | 0)E Y S =   

0 0 0 0( | 0, 0) ( 0| 0) ( | 1, 0) ( 1| 0)E Y S P S E Y S P Sd d d d= = = = = + = = = =  

0 0 0 0 0 0{ ( 0.5 )} { (0.5 0.5 )}(1 )dc c c cb b b b b- += + - + + + - -  
2 2

0 0 0 0(1 ) ( 0.5 ) 0.5(1 )d c c cb b b b- += + - + - + - .  (A-6) 
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Proof for the asymptotic variance of test statistic (17)  
 
Following Lee (2010, p. 109), the asymptotic variance can be estimated with 
 

21
i

i

A
N å  where 1 ,1

1 ,1 1 ,1

ˆ( , )1ˆ ˆ( , ) ( )i ols
i i ols i ols

i

m Y
A m Y

N

b
b h b

b

ì ü¶ï ïº + í ý¢¶ï ïî þ
å . 

 
Observe  
 

 1 ,1 2 2
0 0 0 0 1

ˆ( , )1 1 ˆ1[ 0]{1,1 , 0.5 , 0.5(1 ) }i ols
i

i i

m Y
S c c c pC

N N

b
b

¶
¢= - = - - - = -

¢¶å å . 

 
The first term of A  has 0 01[ 0]Sd º = , and the second term has 01[ 0]S ¹  in 

1 ,1
ˆ( )i olsh b . Hence, the covariance of the two terms is zero, and the above variance 

estimator becomes the sum of two individual variances in (18).  
 

Proofs for (20), (21), (25) and (26)  
 
Recall (A-1). For the SRD quadratic model, we get, for all 0 0S ¹ , 
 

2
0 01: ( | ) { ( | ) } {( ) | }S E Y S E G S c E G c Sb b b- --£ - = + - + -  

0 0.5 0cS Sb b b *
- --= + + , 2 2

0 0 0 0 0 0

1
(1 2 )

3
S S c S c c* = + - + - +  from (A-1);  

0 0 0.5 01: ( | ) d cS E Y S s S Sb b b b *
+ ++³ = = + + + . 

 
Hence,  
 

0 0 0.5 0.5 0 0( | , 0) d c cE Y S S S S S Sb b d b d b d b d b d* *
+ - - + + -- - ++ +¹ = + + + + + . (A-7) 

 
Observe  
 

0
0

2
2 2 2 3 0

0 0 00
0

1
( | 0) ( | ) / |

3 3

c c c
E e E e e c e de c e

c
d = = < = = =ò ; 

0
0

2
12 2 2 3 1 0 0

0 0
0

11
( | 1) ( | ) / (1 ) |

3(1 ) 3cc

c c
E e E e c e e de c e

c
d + +

= = £ = - = =
-ò . 

 
This gives, as 0 0 0G c S e c S e c e c- = + - = + - = -  on 0 0S = ,  
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2 2 2
0 0 0{( ) | 0, 0)} ( 2 | 0)E G c S E e ec cd d- = = = - + =  
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2 2 2
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2

3 2 3 3
c c c c c c c c c

c c
+ + + + + - - + -

= - ´ + = = . 

 
Using these, we have  
 

0 0 0( | 0, 0) { ( | 0, 0) }E Y S E G S cd b b d-= = = + = = -  
2

2 0
0 0 0{( ) | 0, 0)} ( 0.5 )

3
c
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2
0
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3d

c
E Y S cd b b b b+ ++

-
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Analogously to (A-6), we have ((A-8) below gives the [0,1]U  test with (21)) 

 
2
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3 3
2 2 0 0

0 0 0 0

(1 )
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3 3d
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-
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Combine (A-7) and (A-8) to obtain, for any S  including cê úë û ,  
 

2
0 0 0 0 0 0.5( | ) {(1 ) } ( 0.5 )d cE Y S c c Sb b d d b d d+ - -= + - + + - +  

3
2 0
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c
c S Sb d d b d d *
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3
0

0 0
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3
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.(A-9) 

 
Removing 0d  gives the OLS in (20) for the quadratic model with no cutoff 

sample.  
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정수형 점수변수와 비정수 역치를 가진 불연속 

회귀모형* 

이 명 재** · 심 혜 정*** · 박 상 수**** 

9 

 
 

불연속회귀 모형에서 점수변수(running variable)가 연속변수인 G대신 

내림정수(rounded-down integer) S로 관찰되고, 역치(cutoff) c가 정

수가 아닌 경우가 있다. 이 경우, 기존 분석에서는 통제집단인지 처치집
단인지 가려내기 힘든 ‘역치 근처 표본’(cut-off sample)을 배제하고 추

정하였다. 이 논문에서는, 먼저 S가 정수임을 간과하고 추정한 경우 추정

치 오차가 있음을 보였다 (단, 기울기가 대칭이거나 역치가 어떤 중간 값

을 가질 경우, 오차는 0이 됨). 또한, 측정오차 e=G-S의 분포를 가정하

고 이를 테스트할 수 있는데, 만약 테스트가 통과된다면 역치 근처 표본

을 사용하여 추정의 효율성을 높일 수 있음을 밝혔다. 마지막으로, 기존 

2단계 추정이나 부트스트랩 추정보다 간편한 최소자승추정법(OLS) 및 

도구변수추정(IVE) 방법도 함께 제시하였다. 실증분석에서는 연령을 기

준으로 지급되는 한국의 치과치료 보조비 사례를 분석하였다. 

 

핵심 주제어: 회귀불연속모형, 정수형 점수변수, 비정수 역치 

경제학문헌목록 주제분류: C21, C24 
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