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Repeated Games with Asymptotically Finite 
Horizon and Imperfect Public Monitoring 
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We consider a two-player infinitely repeated game with asymptotically finite horizons: 
discount factors converge to zero over time. The stage-game has a continuum of actions and 
a unique and interior Nash equilibrium. It is known that when players perfectly observe 
each other’s actions, cooperation can be achieved and equilibrium payoffs can be strictly 
higher than the stage-game equilibrium payoff. We show that introducing an arbitrarily 
small amount of smooth noise in the monitoring makes cooperation impossible and players 
play the static Nash equilibrium of the stage-game forever. 
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8 
I. Introduction 

 
Games that have a unique stage-game Nash equilibrium have the undesirable 

property that when repeated a finite number of times, the only subgame-perfect 
equilibrium is the repetition of the stage-game Nash equilibrium. That is, there are 
no intertemporal incentives at play and players often end up along an inefficient 
path, such as in the finitely repeated prisoner’s dilemma. 

Infinitely repeated games provide a satisfying answer to this problem. An infinite 
number of repetitions gives rise to new intertemporal incentives as there is no longer 
a last period from which incentives unravel. The folk theorem then tells us that 
every feasible and strictly individually rational payoff can be supported as the 
outcome of a subgame-perfect equilibrium.  
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With constant discounting, infinitely repeated games are stationary. In particular, 
the expected duration of the continuation game is the same at any time.1 One might 
however argue that even though a game may not have deterministic ending, its 
expected length should decrease as time passes. For example, two competitors 
facing a declining demand might expect the proba­bility of interacting to decline 
over time due to increasing risks of shutdowns. Accordingly, Bernheim and 
Dasgupta (1995) (hereafter BD) introduce repeated games with asymptotically 
finite horizons. In each period, there is a strictly positive probability that the game 
continues to the next period. However this probability converges to zero.  

BD study a stage game in which action sets are compact and continuous and 
which has a unique interior and locally inefficient Nash equilibrium. The game is 
infinitely repeated and td , the discount factor applied from period t  to period 

1t+ , is such that 0td >  for all t  and lim 0t td®¥ = . They show that, provided 
discount factors do not converge to zero too fast, it is possible to have subgame-
perfect equilibria in which in each period players receive a payoff strictly higher 
than the stage-game Nash equilibrium payoff. However, they also show that in any 
such equilibria, action profiles will converge to the stage-game Nash equilibrium. 
Nonetheless, this can occur quite late in the game, and thus have little impact on 
period-zero payoffs, such that full efficiency may be approximatively achieved.  

In this paper we show that when introducing an arbitrarily small amount of 
smooth public noise, all the non-degenerate equilibria of BD break down, and the 
only equilibrium of the dynamic game is the infinite repetition of inefficient stage-
game Nash equilibrium.  

The result is similar to Guéron (2015), who studies dynamic contribution games 
with imperfect monitoring and shows that the introduction of a small amount of 
noise causes a complete breakdown in cooperation. However the stage-game 
considered is quite different: in this paper, the stage-game has a unique interior 
Nash equilibrium, whereas in Guéron (2015) the stage-game is dominant-solvable. 

 
 

II. Perfect Monitoring 
 
In this section we briefly present the model of Bernheim and Dasgupta (1995) 

and discuss their main results. 
 

2.1. The Stage Game  
 
There are two players,2 = 1, 2i . Let iA  denote player i ’s action set and 

____________________ 
1 If the discount factor is interpreted as the probability that the interaction continues in the next 

period. 
2 This is only to simplify exposition, but all results extend to the case of n  players. 
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:i i ju A A´ ®¡  denote his utility function. We summarize below all assumptions 
on the stage game:  

 
Assumption 1. : [ , ]i i iA a a=  is a compact subset of ¡ . There is a unique stage-game 
Nash equilibrium Na  which is contained in the interior of 1 2:  A A A= ´ . Each payoff 
function :iu A®¡  is twice continuously differentiable with respect to a in a 
neighborhood of Na  and strictly quasi-concave in ia . Each player’s best reply function 

:i j iA Af ®  is continuously differentiable in a neighborhood of Na . The Jacobian 
matrix of partial derivatives Du  has full rank at the stage-game Nash equilibrium.3,4 

 
Assumption 2. Utility functions iu  are three times continuously differentiable in a 
neighborhood of Na , 2 ( )N

iD u a  is negative definite, =1, 2i  and ( )ND a If -  is 
non-singular, where 2

iD u  is the Hessian matrix of iu  and Df  the Jacobian matrix 
of the best response function.  

 
Remark 1. While BD assume that utility functions are three times continuously 
differentiable, we only use the fact that they are twice continuously differentiable in 
what follows. Moreover we will not require that 2 ( )N

iD u a  is negative definite but 
only that 2 2/ 0i iu a¶ ¶ <  at the Nash equilibrium.  

 
Example 1. A Cournot duopoly with linear inverse demand and constant marginal 
cost satisfies Assumptions 1 and 2. Let 1 2 [0, ]A A q= = , where q  is sufficiently 
high, and let ( , ) max{0, (1 )}i i j i i ju q q q q q= - - , =1, 2i , j i¹ . 

 
2.2. The Dynamic Structure 

 
Time is discrete and the game is played infinitely many times: 0,1,t = K . 

Players share a common sequence of discount factors 0( )t td ³ , where (0,1)td Î  is 
the discount rate from period t  to 1t+ . The game has an asymptotically finite 
horizon in the sense that lim 0t td®¥ = .  

Payoff streams are evaluated using unnormalized discounting. The payoff to 
player i  from a stream of payoffs 0 1( , , )i iu u K , evaluated in period k , 0k ³  is:5 

 
____________________ 

3 Because iu  is strictly quasi-concave in ia , each player i  has a unique best response to any 
action ja . 

4 In the case of two players, the Jacobian matrix evaluated at the Nash equilibrium will be 
1
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Players discount the future in the sense that 1

0 0{ }t
t t td
¥ -
= =å Õ < ¥ . For ease of 

notation we define 1:t t
k kt tb d-

== Õ  to be the rate at which period t  payoffs are 
discounted in period ,k k t£ .  

 
2.3. Cooperation in Repeated Games with Asymptotically Finite Horizons 

and Perfect Monitoring  
 
In this section we briefly present the main results of BD. First, they find a 

sufficient condition on the rate of convergence of discount factors to zero to 
guarantee the existence of a non-degenerate subgame-perfect equilibrium, that is an 
equilibrium in which players obtain a payoff strictly greater than the stage-game 
Nash equilibrium payoff in each period. More specifically, the log of discount rates 
must grow, in absolute value, faster than 2k :  

 
Assumption 3. There exist 0c >  and 0L >  such that 

11 2 2
0

k

k k c
tt td
- --

=Õ ³ L , 1t ³ . 
This is equivalent to having 1

1 1
0 2

lim ln( )kk k
t

t d+
-

®¥ =å > -¥ . 
 

Theorem 1 (Bernheim and Dasgupta 1995). Under Assumptions 1 and 3, there exists a 
subgame-perfect equilibrium in which players receive a payoff strictly higher than the 
stage-game NE payoff in each period.  

Furthermore, in any equilibrium, the action profile converges to the unique interior 
Nash equilibrium of the stage game.  

 
Under the additional regularity of Assumption 2 BD show that assumption 3 is 

not only sufficient but necessary for the existence of non-degenerate subgame-
perfect equilibria. 

They also establish a folk theorem. More specifically they prove the existence of a 
time T*  such that for any T , if discount factors are above a certain threshold for 
T T*+  periods and decline sufficiently slowly, for any feasible, interior and strictly 
individually rational payoff v , there is a subgame-perfect equilibrium in which 
players get v  for at least T  periods.  

 
 

III. The Model under Public Monitoring  
 
We now introduce imperfect public monitoring to the model. At the end of each 

period, and conditional on an action profile a , players only observe a public signal 
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y  drawn from a compact set ( 1)mY mÌ ³¡ , according to a probability measure 
( | )ap × . (Players do not observe each other’s actions.) For any measurable E YÌ  

we have:  
  

( | ) ( | )
E

y E a dy apÎ = òP . 

  
Our main assumption is that the probability measure p  is continuous with 

respect to action profiles. The idea behind this assumption is that if a player changes 
his action by a small amount only, the change in the distribution of signals will also 
be small:  

 
Assumption 4 (Feller continuity). There exists a constant K such that 1| ( |E a +P

2 1 2, ) ( | , )|a E a a KD - £ DP  and 1 2 1 2| ( | , ) ( | , )|E a a E a a K- +D £ DP P  for any 
measurable set E YÌ .  

 
We denote player i ’s realized payoff by iu* , which is a function of his current 

action and the public signal. The ex ante utility function iu  is then the expectation 
of the ex post payoff:6 

 
( ) ( , ) ( | )i i iY

u a u a y dy ap*= ò , a A" Î .  (1) 

 
A public history th  is a sequence of t  public signals: 0 1 1( , , , )t t th y y y Y-= ÎK . 

The set of all public histories is 0: t
t Y³= ÈH .  

A public behavior strategy is  for player i  is a measurable function that 
specifies a probability distribution ( ) ( )t

i ih As ÎD  after any public history th ÎH : 
 

( )
:

( )
i

i t t
i

A

h h
s

s
®Dì

í
î a
H

. 

 
The monitoring technology, along with a public strategy profile 1 2( , )s s=s , 

____________________ 
6 When players receive payoffs at the end of every period, this payoff cannot depend on the other 

player’s action other than through the public signal. This is because the public signal is the only 
information available regarding the other player’s action. This is why the realized payoff function iu*  
is introduced, even though as in most of the literature on repeated games with imperfect monitoring, 
we work with the ex ante utility function.  

Here is nevertheless a simple example of realized payoff. Suppose that the public signal 1 2( , )y y y=  
is two-dimensional and such that 1 2 1 2( , ) ( , )y y q q=E . Then we could have ( , ): ( , )i i i i ju a y u a y* = , in 
which case (1) would be satisfied – as long as iu*  is linear in jy . For example in the case of a linear 
inverse demand we could have ( , ) (1 )i i i i ju a y a a y* = - -  and ( ( , )) ( (1 )) (1i i i i j iu a y a a y a* = - - = -E E

( )) (1 )i j i i ja y a a a- = - -E . 
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induce a probability distribution on H  that we denote by Ps . Expectations with 
respect to that probability distribution will be denoted by Es .7 

Let ( , )i i jV s s  be the expected payoff of player i  from the strategy profile 

1 2( , )s s=s  and ( , | )i i jV hts s  be the continuation payoff from s  after the 
public history ht :  

 

0
0

( , ) : ( )t t
i i j i

t

V u as s b
¥

=

é ù
= ê ú

ë û
åEs , 

0

( , | ) : ( )|t t
i i j i

t

V h u a ht t t t
ts s b

¥
+ +

=

é ù
= ê ú

ë û
åEs . 

  
A profile of public behavior strategies 1 2( , )s s  is a Nash equilibrium if for any 
{1,2}iÎ  and any strategy s ¢  we have that ( , ) ( , )i i j i jV Vs s s s¢³ .8 

 
 
IV. Breakdown of Cooperation with Public Monitoring  
 
We now show that cooperation breaks down under “smooth” imperfect public 

monitoring, even for an arbitrarily small amount of noise.  
First, as in BD, in equilibrium actions will converge to the unique interior stage-

game Nash equilibrium. Hence, for t  sufficiently large, small deviations will offer 
a gain of order two, from the envelope theorem.  

Consider now the cost from such a deviation. First, as discount factors converge 
to zero, intertemporal incentives eventually become weak and future costs have little 
impact on current utility. Second, as action profiles approach the unique stage-
game Nash equilibrium, the cost of being punished by a permanent play of the 
stage-game Nash equilibrium is low.9 Finally, because of the Feller continuity 
assumption, a small deviation will have a low impact on the monitoring, implying a 
low probability of punishment. Overall, the cost of deviating will be lower than the 
gain, so that cooperation cannot be sustained: 

 
Theorem 2. Consider an infinitely repeated game with asymptotically finite horizon 
and imperfect public monitoring that satisfy assumptions 1, 2, 3 and 4. Then with 
probability one the only Nash equilibrium in public strategies is the infinite repetition of 

____________________ 
7 For any finite t , we can easily define the probability distribution over tY  by using the finite 

product measure implied by the distribution of the public signal. This can be extended to the set of 
infinite public histories H  thanks to the Kolmogorov extension theorem. 

8 Given that iu  is bounded, iV  is well defined. 
9 This is the only feasible punishment, as action profiles must converge to the unique stage-game 

Nash equilibrium in any equilibrium. 
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the unique stage-game Nash equilibrium:10,11 
 

{ } 1, 0t Na a t= = " ³Ps . 

 
Remark 2 (Assumptions). Before proceeding to the analysis, let us briefly 
summarize the use of each assumption. Assumption 1, is the main assumption 
about the structure of stage game and is used throughout. Assumption 2 is an 
additional regularity assumption about the stage game, and Assumption 3 is the 
requirement that discount factors do not converge too fast to zero. BD show that 
under Assumptions 1 and 2, Assumption 3 is necessary and sufficient for the 
existence of a non-degenerate subgame-perfect equilibrium.  

 
In what follows, in order to prove Theorem 2, we will use Assumptions 1, 2 and 4, 

which is our main assumption about the continuity of the monitoring technology. 
Although We do not use Assumption 3, we include it nonetheless in the statement 
of Theorem 2 because, without this assumption, there cannot be a non-degenerate 
equilibrium in the repeated game with perfect monitoring. 

 
4.1. Preliminary Results 

 
First, we show in Lemma 1 that in any non-degenerate Nash equilibrium of the 

dynamic game,12 for any t , there must be a set of histories of length at least t  for 
which stage-game payoffs are strictly higher than the stage-game Nash equilibrium 
payoff. That is, incentives for cooperation must be maintained at all times. If that 
was not the case then there would be a time after which only the stage-game Nash 
equilibrium would be played. Unravelling would then occur through backward 
induction and our equilibrium would have to consist of an infinite repetition of the 
stage-game Nash equilibrium. 

 
Lemma 1. Let 1 2( , )s s  be a non-degenerate public Nash equilibrium of the dynamic 
game. Then for any 0t ³ , there exists t t¢ ³  such that ( ) 0t Na a¢ ¹ >Ps . 

 
Proof. Assume this is not the case and let 0T ³  be the smallest integer such that 
for any t T¢ ³  we have ¢ ¹ =( ) 0t Na aPs . Given that the public Nash equilibrium 
of the repeated game is non-degenerate it must be that 0T > . There is then a set of 

____________________ 
10 Recall that Ps  is the probability measure induced by the monitoring technology and a public 

strategy profile on the set of all public histories, as introduced at the end of Section 3. 
11 Note that because time is countable, this is equivalent to saying { , 0} 1t Na a t= " ³ =Ps . 
12 By non-degenerate Nash equilibrium, we mean an equilibrium in which stage-game payoffs are 

strictly higher in some periods than the payoff of the unique stage-game Nash equilibrium. That is, 
non-degenerate equilibria are equilibria that exhibit some degree of cooperation. 
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histories of positive measure such that an action profile different from Na  is 
played in period 1T -  while Na  is played with probability one in the future. At 
least one player will then have an incentive to deviate in period 1T - , a 
contradiction with the fact that 1 2( , )s s  is an equilibrium.                 □ 

 
Note that there can still be histories after which the stage-game Nash 

equilibrium is played indefinitely. This set of histories however is of measure less 
than one.  

Lemma 1 tells us that intertemporal incentives must remain throughout the 
game. However, as players are not mutually best-responding (since this only occurs 
at the unique stage-game Nash equilibrium), there will be myopic incentives to 
deviate. As discount factors become low those myopic incentives become more 
significant relative to intertemporal incentives. To mitigate this, action profiles have 
to approach the stage-game Nash equilibrium. The next lemma is the probabilistic 
version of Lemma 2.1 in BD. 

 
Lemma 2. Let 1 2( , )s s  be a non-degenerate public Nash equilibrium of the dynamic 
game. Then the sequence of action profiles converges almost surely to the stage-game 
Nash equilibrium: (lim ) 1t N

t a a®¥ = =Ps .  
 

Proof. In any equilibrium, the instantaneous gain from a deviation must be lower 
than the maximal punishment incurred after a deviation: that is, for any 0t ³  and 
=1, 2i  we have that 1

00 max ( , ) ( ) ( )
i

t t t k
a i i j i k t i iu a a u a u ub¥ + +
¢ =¢£ - £ å -  a.s., where 

max ( )i a A iu u aÎ=  and Î=min ( )i a A iu u a . As td  converges to zero, for any 0e >  
there exists Te  such that for t Te³  we have 1 1 , 0t k k

t kb e+ + +£ ³ . Therefore 
|max ( , ) ( , )| 0

i

t t t
a i i j i i j tu a a u a a¢ ®¥¢ - ®  a.s., =1, 2i . By the maximum theorem ja a

max ( , )
i ia A i i ju a aÎ  is continuous. As A is compact and there is a unique stage-game 

Nash equilibrium, this implies that {lim } 1t N
t a a®¥ = =Ps .                □ 

 
Corollary 1. Let 1 2( , )s s  be a non-degenerate public Nash equilibrium of the 
dynamic game. For any 0e >  and 0m > , , 0Te m ³  and a  set ,e mH  of histories 
of length equal to ,Te m  and of positive measure such that (i) for ,t Te m³ , td e<  and 
(ii) for almost all histories h  in ,e mH  and almost all histories hh¢  we have 
0 ( ) Nh as m< - £  and ( ) ( )N Nhh a h as s¢ - £ - .13 

 
What Corollary 1 says is that we can find a set of histories of positive measure of a 

sufficiently long length and such that (i) the discount factor is arbitrarily close to 
zero; and (ii) all action profiles in this set are arbitrarily close but different from the 
stage-game Nash equilibrium and will not get further away in the future.  

____________________ 
13 Note that all norms in 2¡  are equivalent. 
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Finally, we will make use of the following lemma which gives us a lower bound 
on the instantaneous gains from a deviation when the action profile is close to the 
stage-game Nash equilibrium:  

 
Lemma 3. Under assumption 2, there exists m >, 0b  such that for all a with 

Na a m- <  we have that  
 

1 2

2

1 2 1 2 1 2max ( , ) ( ) max ( , ) ( ) N

x A y A
u x a u a u a y u a b a a

Î Î
- + - ³ -  

 
Lemma 3 tells us that as action profiles approach the stage-game Nash 

equilibrium, the sum of gain from each player best responding is at least of order 
two. The proof can be found in the appendix.  

 
4.2. Proof of Theorem 2  

 
Let us assume there is a non-degenerate public equilibrium 1 2( , )s s  of the 

asymptotically finitely repeated game with imperfect public monitoring. We will 
show that at least one of the players must have a profitable deviation for histories in 

,e mH . Recall that for histories in ,e mH , the discount factor is of order e  and action 
profiles are different from the stage-game Nash equilibrium but within a distance of 
m¢ . 

Note that at least one of the players must have myopic incentives to deviate, given 
that the action profile is different from the stage-game Nash equilibrium. Consider 
the following deviations for player =, 1, 2i i :  

 

e mf s
s

s
ì Î

¢ = í
î

,( ( )) if ,
( )

( ) otherwise.

t t
t i j

i t
i

h h
h

h

H
 

 
Strategy is ¢  prescribes myopically best responding to player j  for any history in 

,e mH , while agreeing with is  otherwise. (In particular, after having deviated in 
period t  a player return to following the strategy prescribed by is .) We now 
show that at least one of 1s ¢  or 2s ¢  must be a profitable deviation on ,e mH , that 
is that:  

 
( , | ) ( , | ) 0t t

i i j i i jV h V hs s s s¢ - > ,  ,
th e m" ÎH , (2) 

 
for at least one of the players, where for { , }i is s s ¢Î , we can decompose 

( , | )t
i jV hs s  as follows:  
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s s s s d s s s s= + ò( , | ) ( , | ) ( , | ) ( | , , )t t t t
i j t j t i i j Y jY

V h u h V h y dy hP .  (3) 

 
To do so we show that  

 
2

1

{ ( , | ) ( , | )} 0t t
i i j i i j

i

V h V hs s s s
=

¢ - >å ,  ,
th e m" ÎH ,  (4) 

 
which implies that (2) holds for at least one player.  

Using (3), we can rewrite Equation (4) as follows, for an arbitrary 0y YÎ :14,15 
 

2

0
1

[ ( , | ) ( , | )]t t
t i i j i i jY

i

V h y V h yd s s s s
=

- ´åò   

[ ( | , , ) ( | , , )]t t
Y i j Y i jdy h dy hs s s s¢-P P   

2

1

{ ( , | ) ( , | )}t t
i i j i i j

i

u h u hs s s s
=

¢< -å .   (5) 

 
From Lemma 3 we know that for m  sufficiently small the right-hand side of (5) 

is bounded from below by 2bm , while each term in the sum on the left-hand side 
must be bounded from above by 2cm , for some constant 0c >  – this is because 
of Feller continuity (assumption 4), which bounds the difference between the 
probability measures by a term of order m , and because all action profiles are 
within m  of Na , which bounds the difference between the two value functions by 
another term of order m  (recall that the utility function are assumed to be twice-
continuously differentiable – see Assumption 2). As td  is arbitrarily small (5) 
holds, which implies that at least one of the players has a profitable deviation on 

,e mH .  
 
 

V. Conclusion  
 
In this paper we consider the class of repeated games with asymptotically finite 

horizons introduced by Bernheim and Dasgupta (1995) and show that non-
degenerate equilibria are not robust to the introduction of an arbitrarily small 
amount of smooth public noise in the monitoring. This is because in any 
equilibrium of the perfect monitoring case, maximal punishments go to zero over 
____________________ 

14 This is because, for an arbitrary 0y , the term inside the integrals in what follows: ( ,Y i iV sò  

0 0 0 0| ) ( | , , ) ( , | ) ( | , , ) ( , | ) ( , | ) 0t t t t t t
j Y i j Y i i j Y i j i i j i i jh y dy h V h y dy h V h y V h ys s s s s s s s s s s¢- ò = - =P P . 
15 For ease of notation, we write ( , | )t

i i ju hs s  instead of ( ( ), ( ))t t
i i ju h hs s . Similarly, we use 

( | , , )t
Y i jdy hs sP  to denote the distribution ( | ( ), ( ))t t

Y i jdy h hs sP . 
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time, as discount factors go to zero. The introduction of a small amount of noise in 
the monitoring renders deviations profitable.  

Even though the rate at which punishments go to zero is exogenous, given by the 
rate of decline of discount factors, it is not obvious that the result extends to the case 
of private strategies or private monitoring. Consider for example Lemma 1. Under 
private monitoring, even though players do not play the unique stage-game Nash 
equilibrium, they could still both be best-responding to their beliefs about the other 
player’s strategy.  
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A. Proof of Lemma 3  
 
Let ( , ) :d

i i ju a a A®¡  be the function which returns the highest payoff player 
i  can get by deviating from action profile ( , )i ja a , that is ( , ) ( ( ), )d

i i j i i j ju a a u a af= . 
Consider the following second order Taylor expansions around Na : 

 
2

21 1
1 1 2 1 2 2 1 1 2

2 1

1
( , ) ( ) ( ) ( ) ( ) ( )

2
N N N N Nu u

u a a u a a a a a a a
a a

¶ ¶
= + - + -

¶ ¶
  

2 2
2 1 1

2 2 1 1 22
2 1 2

1
( ) ( ) ( )( ) ( )

2
N N N N Nu u

a a a a a a a a
a a a

¶ ¶
+ - + - -

¶ ¶ ¶
  

2
( )No a a+ - , 

 
where the first order term in a1 is zero from the first order condition 1

1
( ) 0u N

a a¶
¶ =  

and  
 

1 1 2 1 1 2 2( , ) ( ( ), )du a a u a af=   

1 1
1 1 2 2 2 2 1 2 2 1 2 1 2 2

1 2

( ( ), ) ( ) ( ( ), ) ( ) ( ( ), )N N N N N N N Nu u
u a a a a a a a a a

a a
f f f f

é ù¶ ¶¢= + - +ê ú¶ ¶ë û
 

2 2
2 1 1

2 2 1 2 2 1 2 1 2 22
1 2 2

1
( ) ( ( ), ) ( ) ( ( ), )

2
N N N N N Nu u

a a a a a a a
a a a

f f f
é ù¶ ¶¢+ - +ê ú¶ ¶ ¶ë û

 

2
( )No a a+ -  

¶
= + - +

¶
1

1 2 2
2

( ) ( ) ( )N N Nu
u a a a a

a
 

f
é ù¶ ¶¢- +ê ú¶ ¶ ¶ë û

2 2
2 1 1

2 2 1 2 2
1 2 2

1
( ) ( ) ( ) ( )

2
N N N Nu u

a a a a a
a a a

 

2
( )No a a+ - , 

 
where the last equality is obtained because from the envelope theorem we have that 

1

1 2 2( ( ), ) 0u N N
a a af¶
¶ = . 

Therefore  
 

2
2 1

1 1 2 1 1 2 2 2 1 2
1 2

1
( , ) ( , ) ( ) ( ) ( )

2
d N N Nu

u a a u a a a a a a
a a

f¶ ¢- = -
¶ ¶

 

¶ ¶
- - - - - + -

¶ ¶ ¶

2 2
22 1 1

1 1 1 1 2 22
1 1 2

1
( ) ( ) ( )( ) ( ) ( )

2
N N N N N Nu u

a a a a a a a a o a a
a a a

, 
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which can be further simplified into  
 

2
2 21

1 1 2 1 1 2 2 2 1 22
1

1
( , ) ( , ) ( )[( ) ( ( ))

2
d N N Nu

u a a u a a a a a a
a

f¶ ¢- = - -
¶

 

22
1 1 1 1 2 2 1 2( ) 2( )( ) ( )] ( )N N N N Na a a a a a a o a af¢+ - - - - + - , 

 
by noting that f¶ ¶

¶ ¶ ¶
¢= -

2 2
1

22( ) i

i j i

u uN
ia a a

a  from differentiating the first order condition.  
We obtain a similar expression for 2 1 2 2 1 2( , ) ( , )du a a u a a-  and sum both gains to 

obtain:  
 

1 1 2 2( ) ( ) ( ) ( )d du a u a u a u a- + - =   
21

( ) [ ( ) ] [ ( ) ]( ) ( )
2

N t N t N N Na a D a I U D a I a a o a af f- - - - + - , 

 
where 

 

1 2

2 1

1 ( )
( )

( ) 1

N
N

N

a
D a I

a

f
f

f
¢æ ö-

- = ç ÷¢ -è ø
, 

 
and 

 
2

1
2
1

2
2

2
2

( ) 0

0 ( )

u N

a

u N

a

a
U

a

¶

¶

¶

¶

æ ö
ç ÷= -ç ÷ç ÷
è ø

. 

 
The matrix [ ( ) ] [ ( ) ]N t ND a I U D a If f- -  is positive definite as we know that 

when Na a¹  then at least one player has a profitable deviation and therefore 

1 1 2 2( ) ( ) ( ) ( ) 0.d du a u a u a u a- + - > 16 Moreover its determinant is non-zero as f( )ND a  

-I  and U  are non-singular. U  is non-singular as utility functions are strictly 

concave at the Nash equilibrium, so that 
2

2 ( ) 0i

i

u N

a
a¶

¶
¹ , 1,2i = . Let minl  denote 

the smallest eigenvalue of [ ( ) ] [ ( ) ]N t ND a I U D a If f- - , which is strictly positive. 

We then have the following inequality:  
 

2 2

1 1 2 2 min

1
( ) ( ) ( ) ( ) ( )

2
d d N Nu a u a u a u a a a o a al- + - ³ - + - . (6) 

____________________ 
16 The matrix [ ( ) ] [ ( ) ]N t ND a I U D a If f- -  cannot be zero as Assumption 2 implies it must have 

full rank. 
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Assume now that the conclusion of Lemma 3 does not hold. This implies that for 

all b , 0m > , there is an a  with Na a m- <  and such that we have that 
2

1 1 2 2( ) ( ) ( ) ( )d d Nu a u a u a u a b a a- + - < - , which would contradict (6).  
  



Yves Guéron: Repeated Games with Asymptotically Finite Horizon and Imperfect Public Monitoring 123

References  
 

Bernheim, B. and A. Dasgupta (1995), “Repeated Games with Asymptotically Finite 
Horizons,” Journal of Economic Theory, 67(1), 129–152.  

Guéron, Y. (2015), “Failure of Gradualsim under Imperfect Monitoring,” Journal of 
Economic Theory, 157, 128–145. 

 

 


