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We study the efficiency and revenue properties of first- and second-price auctions in an 
environment where bidders’ values are drawn from different binary distributions. We 
identify a necessary and sufficient condition for a first-price auction to induce an efficient 
allocation. The condition reveals the source of allocative inefficiencies in asymmetric first-
price auctions. We further show that the seller’s revenue is higher in a second-price auction 
than it is in a first-price auction whenever allocations in the two auction formats are 
efficient. We highlight how the difference in different bidder types’ beliefs induces the 
results. 
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I. Introduction 

 
It is well known that when there is ex ante asymmetry among bidders (i.e., their 

values are drawn from different distributions), the allocation is often inefficient in 
first-price auctions and the revenue equivalence between first- and second-price 
auctions no longer holds. Although it is still a weakly dominant strategy for each 
bidder to bid his value in asymmetric second-price auctions, the case is often that no 
closed-form expression for bidding strategies in asymmetric first-price auctions 
exists. The consequent complications render the analysis of first-price auctions 
significantly more involved, which in turn limits our understanding of asymmetric 
auctions. In particular, the revenue properties of first- and second-price auctions, 
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which are one of the most basic questions in auction theory, have been only 
investigated partially. 

In this paper, we study allocative efficiency in first-price auctions and show that 
first- and second-price auctions yield different revenues, even if both allocations are 
efficient. As we shall discuss shortly, most studies in the asymmetric auction 
literature consider the case where allocations are not efficient in first-price auctions 
and attempt to find conditions under which one auction formation yields higher 
revenue than the other. We take an alternative approach. We restrict our attention 
to equilibrium with an efficient allocation and provide a necessary and sufficient 
condition for the existence of such an equilibrium. This reveals the source of 
allocative inefficiencies in asymmetric first-price auctions. Because the seller 
revenue is the same as the social surplus minus the bidders’ payoffs and the social 
surplus is maximized with an efficient allocation, our approach helps us identify the 
underlying forces that cause the different revenues of the two auction formats after 
controlling for the social surplus.  

To this end, we consider a simple model of asymmetric auctions. There are 
2N ³  bidder types that are ex-ante distinguishable and more than two bidders of 

any given type. Bidders draw their values from different binary distributions. In 
particular, each type- n  bidder’s value for the object is either 0  or nv . Thus, 
each type is identified with the associated positive value nv  and the probability of 
drawing that value. Although the model is specific, it considers a rich environment 
with multiple bidder types and an arbitrary number of bidders.  We also do not 
impose any stochastic relations among the distributions.  

The two main technical results of this paper are as follows. First, we identify a 
necessary and sufficient condition for the first-price auction to induce an efficient 
allocation. Specifically, we show that if bidder types are ordered positively in terms 
of their associated positive values (i.e., 1n nv v +< ), then the allocation of the first-
price auction is efficient if and only if type- n  bidders have no incentive to outbid 
type- 1n+  bidders. Second, provided that the resulting allocations are efficient in 
both first- and second-price auctions, we show that the seller’s expected revenue is 
higher in the second-price auction than in the first-price auction.  

Both results are driven by the fact that different types of bidders have different 
beliefs because of the ex-ante bidder asymmetries. In asymmetric auctions, bidders 
differ in two respects. First, each bidder’s value is known only to the bidder, and 
thus, each bidder has a different value. We call this difference-in-values. Second, 
each bidder knows the value of one bidder of his own type (i.e., himself), whereas 
other type bidders do not. Consequently, bidders have different beliefs about the 
preferences of other bidders. We call this difference-in-beliefs. Although the first 
difference is present in any symmetric auction, the second difference arises only 
with asymmetries. 

Given this observation, consider two bidders, one type n  and one type n¢ , and 
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a type- n¢  bidder’s deviation incentives to a type- n  bidder’s equilibrium bid. The 
difference-in-values means a bidder with a higher value bids a higher price; that is, 
a type- n¢  bidder has an incentive to outbid (resp., underbid) a type- n  bidder if 

n nv v¢ >  (resp. n nv v¢ < ). In contrast, the difference-in-beliefs always provides a 
type- n¢  bidder with an incentive to outbid type- n  bidder (whether n nv v¢ >  or 

n nv v¢ < ). This is because the former faces a lower probability of outbidding all type-
n  rivals than the latter, even if they bid the same price.1 Consequently, a type- n¢  
bidder is more willing to increase his bid than a type- n  bidder is. Note that the two 
incentives work in the same direction if n nv v¢ > , but in the opposite direction if 

n nv v¢ < . As a result, a type- n¢  bidder has no incentive for downward deviation but 
may have an incentive for upward deviation. 

These mechanisms imply the absence of unambiguous revenue ranking when 
the allocation is not efficient in first-price auctions. In that case, bidders have an 
incentive for upward deviation, that is, they are overly aggressive in the first-price 
auction, which positively affects the seller’s revenue. Therefore, which auction 
format delivers a higher revenue to the seller depends on which force dominates. If 
the bidders’ information rents resulting from the differences in their beliefs are 
sufficiently large, then the seller’s revenue is lower in the first-price auction, 
whereas if the bidders have a sufficiently strong incentive to increase their bids, then 
the opposite is true. This explains the second result of the paper, that is, in the 
absence of any distributive distortions (i.e., in equilibrium with an efficient 
allocation), the seller’s expected revenue is higher in the second-price auction than 
in the first-price auction.  

Although there is a large body of literature on asymmetric auctions, most 
previous works have relied on specific assumptions on the number of bidders and/or 
valuation distributions because of technical difficulties related to first-price auctions. 
Maskin and Riley (1985) derive equilibrium bidding strategies of a first-price 
auction with binary distributions. In a later study, Maskin and Riley (2000) derive 
sufficient conditions for one auction format to be revenue-superior to the other 
between first- and second-price auctions. Plum (1992), Cheng (2006), and Kaplan 
and Zamir (2012) derive equilibrium strategies of first-price auctions, wherein the 
first two works consider cases of power distributions and the third considers 
asymmetric uniform distributions. Kirkegaard (2012) employs a mechanism design 
approach and provides sufficient conditions for the first-price auction to dominate 
the second-price auction. Doni and Menicucci (2013) assume binary distributions 
and show that the second-price auction yields a higher revenue than the first-price 
auction when the distribution functions satisfy certain conditions. Gavious and 

____________________ 
1 If the number of type- n  bidders is nm  and the probability that a type- n  bidder bids less than 

b  is ( )G b , then the probability of a type- n¢  bidder outbidding all type- n  bidders is ( ) nm
G b , 

whereas that of a type- n  bidder is 1
( ) nm

G b
- . 
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Minchuk (2014) study an environment in which valuation distributions are “close 
to” uniform distributions and compare the revenues of the two auction formats. 
However, these works are all limited to auctions with only two bidders.  

With an arbitrary number of bidders, Lebrun (1999) characterizes bidding 
strategies for first-price auctions, while Fibich, Gavious, and Sela (2004) show that 
the two auction formats are approximately revenue-equivalent when the asymmetry 
is “weak”. However, these works assume that the bidders’ valuation distributions 
have common support. Relaxing the last assumption, Lebrun (2006) provides the 
uniqueness of equilibrium for the first-price auction. Hubbard and Kirkegaard 
(2015) characterize equilibrium bidding strategies of first-price auctions with two 
bidder types and multiple bidders for each type. Kirkegaard (2016) compares the 
revenues of first- and second-price auctions based on the results established in 
Hubbard and Kirkegaard (2015).  

Given the set up with binary distributions, our model is similar to that of Doni 
and Menicucci (2013) but differs from theirs and other studies in the literature in 
several ways. First, our model employs multiple bidder types and more than two 
bidders for each type.2 While this approach makes it difficult to derive bidding 
strategies in first-price auctions, we provide an explicit characterization for an 
efficient equilibrium and also offer several examples of inefficient equilibria. Second, 
although we consider binary distributions for bidders’ valuations, we allow for 
different supports and do not impose any stochastic relations on these distributions. 
Thus, our revenue ranking result does not depend on the details of valuation 
distributions, unlike in Doni and Menicucci (2013) and others. 

The remainder of the paper is organized as follows. Section 2 introduces our 
auction environment. Section 3 contains our main results. Section 3.1 characterizes 
the equilibrium bidding strategies of second-price auctions. Section 3.2 constructs a 
unique bidding strategy profile for an efficient equilibrium in first-price auctions 
and presents a necessary and sufficient condition for the existence of such an 
equilibrium. Section 3.3 compares the revenues of first- and second-price auctions. 
Section 4 discusses the implications of a large number of bidders, continuous 
valuation distributions, and inefficient allocations in the first-price auction. Section 
5 concludes the paper. 

 
 
 
 

____________________ 
2 If there are two bidders of different types, then our model includes those of Maskin and Riley 

(1985) and Doni and Menicucci (2013) (for the case 1 2L Lv v=  in their model). If there are two bidder 
types with multiple bidders of each type, then our model can be viewed as a discrete version of those of 
Hubbard and Kirkegaard (2015) and Kirkegaard (2016). 
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II. Model 
 
A seller wishes to sell an indivisible object. There are ( 2)N ³  types of bidders 

and the number of type- n  bidders is given by ( 2)nm ³ . Each type- n  bidder 
draws his value for the object independently and identically from a binary 
distribution. Specifically, a type- n  bidder’s value is ( 0)nv >  with probability 

(0,1)np Î  and 0  with probability 1 np- . For notational simplicity, let 0 0v =  
and assume that 1n nv v- <  for any 2, ,n N= K , without loss of generality. If a 
bidder whose realized value is v  wins the object and pays b , then the bidder’s 
payoff is v b-  and the seller’s revenue is b . All other bidders obtain a zero payoff. 

Three remarks are relevant to the environment. First, we use “type” to refer to a 
bidder’s ex-ante characteristic (distribution function), not a bidder’s ex-post realized 
value. Second, we do not impose any stochastic order on the valuation distributions. 
For instance, it can be the case that 1n np p +> , so that there is no clear first-order 
stochastic dominance. Finally, the assumption that each bidder has zero value with 
a positive probability is a convenient normalization and does not alter our results as 
long as each bidder’s minimum value is the same.3 

We define some notations for later use. Let : (1 ) nm
n nq p= -  and : kn n kQ q>= Õ  

denote the probabilities that all type- n  bidders and all bidders with types above n  
draws zero, respectively. Next, 1: (1 ) nm

n nr p -= -  denotes the probability that 1nm -  
out of nm  type- n  bidders draw zero. 

 
 

III. Equilibrium and Revenue 
 

3.1. Second-Price Auction 
 
We first analyze the second-price auction. As in the standard second-price 

auction with symmetric bidders, it is a weakly dominant strategy for each bidder to 
bid his true value, even with asymmetries. Hence, we focus on this case.  

Let S
nV  denote the expected payoff of a type- n  bidder who draws a positive 

value nv . In equilibrium, he obtains a positive payoff if and only if no bidder of 
type- n n¢ ³  draws a positive value, the probability of which is n nQ r .4 The price he 
pays to the seller depends on the realizations of lower-type bidders’ values. For any 
n n¢ < , the price is equal to nv ¢  if no bidder between 1n¢ +  and 1n-  draws a 

____________________ 
3 An alternative interpretation is that all type- n  bidders put value nv  on the object, but each type-

n  bidder participates in the auction with probability np .  
4 The bidder wins with a positive probability, as long as no bidder whose type is strictly above n  

draws a positive value. If there is another type- n  bidder with a positive value, then his payoff is zero, 
whether he wins or not.  
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positive value (with probability 1
1

n
j n jq-

¢= +Õ ), while at least one type- n¢  bidder does 
draw a positive value (with probability 1 nq ¢- ). Therefore, the price a type- n  
bidder pays, conditional on winning and obtaining a positive payoff, is 

 
1 1

1 1 1 2 2 1 1 0
2 2

: (1 ) (1 ) ( ) .1
n n

S
n n n n n n j j

j j

qb q v q q v q qv v
- -

- - - - -
= =

= - + - + -+ +Õ ÕL
  

 
Proposition 1. In the second-price auction, the expected payoff of a type- n  bidder with 
value nv  is equal to ( )S S

n n n n nV Q r v b= - . 
 
The seller’s expected revenue can be calculated similarly. Although the exact 

solution is not necessary for the subsequent analysis, notably, the allocation is 
efficient in the second-price auction because a bidder with the highest value always 
wins.  

 
3.2. First-Price Auction 

 
Now we consider the first-price auction, focusing on the equilibrium in which 

the allocation is efficient. We refer to this equilibrium as an efficient equilibrium.5 
We first construct a unique equilibrium strategy profile that yields an efficient 
allocation and then characterize a necessary and sufficient condition for the 
existence of an efficient equilibrium. We restrict our attention to a symmetric 
equilibrium in which bidders of the same type play an identical strategy to facilitate 
a comparison with a second-price auction.  

Since the optimal bidding strategy of a bidder with value zero is straightforward, 
we consider a type- n  bidder with value nv . Let Pr( )) (nF b xx º £  denote the 
cumulative distribution function for a type- n  bidder’s bid when he has a positive 
value and let its support be [ , ]n nb b . We denote his expected payoff by F

nV . The 
following observation provides the necessary conditions for an efficient equilibrium.  

 
Lemma 1. In any symmetric equilibrium, 0F

nV > . Moreover, if the allocation is 
efficient in equilibrium, then the following results hold:  

(i) 1 0b =  and 1n nb b += . 
(ii) n nb b<  and ( )nF ×  is continuous and strictly increasing. 
 

Proof. See the Appendix.  ■ 
 
The first part of Lemma 1 implies that n nb v<  for any n  in any symmetric 

____________________ 
5 See Section 4.3 for an analysis of inefficient equilibria in that allocations are not efficient. 
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equilibrium because any bidder with a positive value obtains a positive payoff. The 
second part of the lemma shows that in any (symmetric) efficient equilibrium, there 
cannot be a gap in the set of bids, and a bidder with higher value bids more 
aggressively. It also implies that no pure-strategy equilibrium exists. Another 
important implication of Lemma 1 is that for an efficient equilibrium to exist, there 
must be at least two bidders of each type, except for the lowest type; that is, 2nm ³  
for any 2n ³ , as we have already assumed. To see this, suppose that 1nm =  for 
some 2n ³ . Then, we must have n nb b= .6 However, in this case, a type- 1n-  
bidder has an incentive to outbid the type- n  bidder because 1n nb b- =  and the 
deviation to slightly above nb  makes his winning probability jump, which is a 
contradiction.   

The unique efficient equilibrium can be constructed from the following 
relationship between 1nb -  and nb . A type- n  bidder who bids 1( )n nb b- =  wins if 
and only if no type weakly above n  draws a positive value, and thus, his expected 
payoff is 1( )n n n nQ r bv -- . Similarly, a type- n  bidder who bids nb  wins if and only 
if no type strictly above n  draws a positive value, and thus, his expected payoff is 

( )n n nQ v b- . Because a type- n  bidder must be indifferent between 1nb -  and nb , 
we have 1( ) ( )n n n n n n nQ r v Q bvb -- = - , implying that  

 

1(1 ) .n n n n nr v rb b -= - +  

 
Solving the difference equation with the initial value 0 0b = , we have 

 

1 1 1 1 0
2 1

(1 ) (1 ) .1) (
n n

n n n n n n j j
j j

b r v r v rr r v vr- -
= =

= - + - + -+ +Õ ÕL   (1) 

 
Given the cutoffs 1 },{ , nb b¼ , the expected payoff of a type- n  bidder, F

nV =
1( )n n n nQ r bv -- , can be calculated immediately. 

Next, to obtain a type- n  bidder’s bidding strategy, suppose that he bids some 
, ][ n nb b bÎ . Then, he outbids a rival of the same type when the latter draws zero 

(which happens with probability 1 np- ) or draws a positive value but bids less than 
b  (which happens with probability ( )n np F b ). Thus, the type- n  bidder’s expected 
payoff is equal to  

 
1(1 ( )) ( ),nm

n n n n nQ p p F b v b-- + -   

 
where ( )nF b  is uniquely determined by equating this with F

nV  above.  

____________________ 
6 If 1nm = , then the winning probability of the type- n  bidder does not change between nb  and 

nb . Hence, he can be indifferent between nb  and nb  only when n nb b= .  
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Proposition 2. The unique symmetric efficient equilibrium is that each type- n  bidder 
with value nv  bids according to the distribution function ( )nF ×  that satisfies 

 
1 1

1(1 ( )) ( ) (1 ) ( ).n nm m
n n n n n n np p F b v b bp v- -

-- + - = - -   

 
A type- n  bidder’s expected payoff in equilibrium is 1( )F

n n n n nV Q r v b -= - . 
 
We now characterize the condition under which the strategy profile described in 

Proposition 2 constitutes an equilibrium. To this end, we first consider one-step 
deviations: a one-step downward deviation of a type- 1n+  bidder with value 1nv +  

to bid 1 )[ ,n nb b b-Î  and a one-step upward deviation of a type- 1n-  bidder with 

value 1nv -  to bid 1 ]( ,n nb b b-Î .7 Later, we show that it suffices to consider such 

one-step deviations to verify whether any deviation is profitable.  
Suppose that a type- 1n+  bidder with value 1nv +  deviates to bid 1 ]( ,n nb b b-Î . 

He wins if and only if no other bidder of type strictly above n  draws a positive 
value, and each type- n  bidder bids less than b . Hence, his payoff from such a 
deviation is 1 1 1(1 ( )) ( )nm

n n n n n nQ r p p F b v b+ + +- + - . For the deviation to not be 
profitable, this payoff must be lower than his equilibrium payoff, that is, 

 

1 1 1 1 1 1 1( ) (1 ( )) ( ).nmF
n n n n n n n n n n nV Q r v rb Q p p F b v b+ + + + + + += - + -³ -   (2) 

 
From the fact that a type- n  bidder is indifferent between nb  and 1 )[ ,n nb b b-Î , 
we also have 

 
1( ) (1 ( )) ( ).nm

n n n n n n n nQ v Q p p F b vb b-- = - + -   

 
Using this, condition (2) is written equivalently as  

 

1

1

(1 ( )) .n n n n
n n n

n n

v b v b
p

v b v
F b

b
p+

+

+
- -

³ -
- -

  

 
Note that since 1 ( ) 1n n np p F b- + <  and 1

1

n n n n

n n

v b v b
v b v b
+

+

- -
- ->  for any 1 )[ ,n nb b b-Î , the 

inequality always strictly holds, which shows that no bidder has an incentive to 
deviate one step below.  

Next, consider a type- 1n-  bidder’s deviation to bid 1 ]( ,n nb b b-Î . His payoff 
from such a deviation is 1(1 ( )) ( )nm

n n n n nQ p p F b v b-- + - , because the bidder wins if 
and only if no bidder of type strictly above n  draws a positive value and each type-

____________________ 
7 It is clear that bidders with zero value have no incentive to deviate.  
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n  bidder bids less than b . For the bidder not to deviate, we must have 
 

1 1 1 1 1( ) (1 ( )) ( ).nmF
n n n n n n n n nbV Q v p FQ p b v b- - - - -³= - - + -   

We can rewrite this as 
 

1

1 1 1

1

,
n nm m

n n n n

n n

v b v b

v b v b

-

- - -

-

æ ö æ ö- -
³ç ÷ ç ÷- -è ø è ø

  (3) 

 
using the relation 1 1

1(1 ) ( ) (1 ( )) ( )n nm m
n n n n n n n n nQ p v Q p p F bb v b- -

-- - = - + - , which 
is obtained from the fact that a type- n  bidder is indifferent between 1nb -  and 

1 ]( ,n nb b b-Î . In Proposition 3, we show that condition (3) is equivalent to 
 

1
1

( 1)
,n n n

n
n

m v b

m
v -

-

- +
£   (4) 

 
where 1nb -  is given by (1).   

Note that since (2) is always satisfied, no bidder has an incentive for one-step 
deviations if and only if (4) holds. However, this only ensures “local” incentive 
compatibility, and there is a concern that a type- n  bidder may profitably deviate 
“globally” by bidding higher than 1nb +  or lower than 1nb - . Proposition 3 ensures 
that no such global deviation is profitable as long as (4) is satisfied.   

 
Proposition 3. A symmetric efficient equilibrium exists in the first-price auction if and 
only if (4) holds for any 2, ,n N= K . 

 
Proof. See the Appendix.  ■ 

 
Why do bidders have no incentive for downward deviation but may have an 

incentive for upward deviation? To address this question, consider two bidders, one 
of type n  and the other of type n¢ , and suppose that both bidders bid the same 
price 1 ][ ,n nb b b-Î . The two bidders have two differences. First, they have different 
values of nv  and nv ¢ . This is familiar in symmetric auctions, and the bidder with 
the higher value tends to bid the higher price. Second, they also have different 
beliefs on the types of competitors. The type- n  bidder knows that at least one type-
n  bidder (i.e., himself) has a positive value, whereas the type- n¢  bidder does not. 
Thus, the probability of outbidding other type- n  bidders is (1 n np p- + 1( )) nm

nF b -  
to the former, but is (1 ( )) nm

n n np p F b- +  to the latter. This difference results in the 
latter bidder having a stronger incentive to bid aggressively in the range 1 ,[ ]n nb b- . 
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[Figure 1] Indifference curves of a type- n  bidder (solid) and a type- n¢  bidder (dashed) 
when, hypothetically, they have the same value. 

 

 
 
To see this point, suppose hypothetically, that the type- n¢  bidder has the same 

value as the type- n  bidder (i.e., n nv v¢ = ), and denote by ( )1 n n ny p F bp +º -  the 
probability that a type- n  bidder bids less than or equal to b . Then, the 
expected payoffs of type- n  and type- n¢  bidders are 1( )nmF

n nV y v b-= -  and 
(nmF

n nV y v¢ = )b- , respectively. Due to the difference-in-beliefs, the type- n  bidder’s 
marginal rate of substitution between b  and y  is 

 

, ,
( 1)( )

n
b y

n n

y
m b

MR
v

S =
- -

-   

 
whereas the type- n¢  bidder’s is 

 

, .
( )

n
b y

n n

y
m b

RS
v

M ¢

-
= -   

 
Figure 1 depicts the indifferent curves of the two bidders. Observe that the type- n¢  
bidder’s indifference curve is flatter than that of the type- n  bidder. Therefore, if 
the type- n  bidder is indifferent over the interval 1 ,[ ]n nb b- , then the optimal price 
for the type- n¢  bidder is the highest price nb . Intuitively, the type- n  bidder has 
better information than the other types for the bids in 1 ,( ]n nb b- . Since he can better 
tailor his bid, he tends to bid just enough to win the auction, whereas the type- n¢  
bidder cannot fine-tune his bid and, therefore, tends to bid higher. 
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[Figure 2] Indifference curves on 1 ,[ ]n nb b-  
 

 
(a) Type- 1n+  bidder                    (b) Type- 1n-  bidder 

 

 
Note that difference-in-values and the difference-in-beliefs work in the same 

direction for downward deviations. To illustrate, consider a type- 1n+  bidder. The 
difference-in-values provides him with an incentive to outbid type- n  bidders even if 
they have the same beliefs. The difference-in-beliefs strengthens this incentive further. 
Therefore, the type- 1n+  bidder never has an incentive to deviate downward. Put 
differently, for 1 ][ ,n nb b b-Î , the marginal rate of substitution between y  and b  
for the type- 1n+  bidder is 

 
1

, ,
1

.
( 1)

n n
b y b y

n n

y
MRSM

v
R

m
S ¢+

+

= - >
-

  

 
His indifference curve is even flatter than the type- n¢  bidder’s, as depicted in 
Figure 2(a). Therefore, it follows that the optimal price in the interval 1 ,[ ]n nb b-  is 

nb . 
For upward deviations, the two differences work in the opposite direction, and 

this is why the incentive compatibility condition (4) may be violated. Consider a 
type- 1n-  bidder. The difference-in-values weakens his incentive to deviate 
upward, whereas the difference-in-beliefs encourages the upward deviation. 
Depending on the parameter values, the latter force may outweigh the former, in 
which case we do not have an efficient equilibrium. More precisely, the marginal rate 
of substitution between y  and b  for the type- 1n-  bidder is 

 

1
,

1

,
( )

n
b y

n n

y
b

MR
v

S
m

-

-

= -
-
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which may or may not be smaller than ,
n
b yMRS . In particular, the type- 1n-  

bidder has an incentive to deviate to 1 ,[ ]n nb b-  if and only if  
 

1 1
, , 1 1

( 1)
when ,n n n n n

b y b y n n
n

MRS b
m v b

MRS b v
m

- -
- -

- +
> >= Û   

 
as depicted in Figure 2(b), which explains condition (4). 

Observe that condition (4) holds when nv  is sufficiently larger than 1nv -  
or when nm  is sufficiently large. This is intuitive. When nv  is sufficiently 
larger than 1nv - , the difference-in-value effect dominates and when nm  is 
sufficiently large, the difference-in-belief effect is small because the difference 
between 1nmy -  and nmy  decreases as nm  increases. See Section 4.1. for details. 

 
3.3. Revenue Comparison 

 
This section compares the revenues of the first- and second-price auctions in the 

class of equilibria with efficient allocation.  
 

Proposition 4. The seller’s expected revenue is higher in the second-price auction than it is 
in the first-price auction with an efficient equilibrium. 

 
Proof. It is clear that 1 1 1 1 1

F SV V Q r v= = . That is, the lowest type receives the same 
expected payoff in the two auction formats. We show that any other type obtains a 
strictly higher expected payoff in the first-price than in the second-price auction, 
thereby proving that the seller’s revenue is higher in the latter. To this end, fix 

1n > . Then, from Proposition 1,  
 

1 1 1 2 2 1 1 0 )( (1 ) (1 .)S
n n n n n n n n n nQ r v q v q q v q qV v- - - - - -= - - - - -- ¼L   

 
Now, from Proposition 2, we have 

 

1 1 1 2 2 1 1 0( (1 ).) (1 )F
n n n n n n n n n nr v r r v r rv r vV Q - - - - - -- - - -= ¼- - L   

 
It suffices to show that  

 

1 1 1 2 2 1 1 0)(1 (1 )n n n n n nq q qv v q q v- - - - - -- + - + + ¼L   

1 1 1 2 2 1 1 0)( (1 )1 n n n n n nv rr r v r r v- - - - - -- +> ¼- + +L  . (5) 

 
Observe that both 1 1 1 2 1, , (1 ,1 )( )n n n nq q q q q- - - -¼ - -L  and 1 1 1, ,( (1n nr rr - -¼ -L
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2 1),1 )n nr r- --  are well-defined probability vectors.8 Because / (1 )n n n npq qr - >=  
for any n , 

 

1 11 1n k n kqq r r- -- > ¼-¼   for any  , 11, .k n-= ¼   

 
Therefore, the former probability vector first-order stochastically dominates the 
latter and the result follows immediately.  ■ 

 
In the absence of ex-ante asymmetries, the bidders’ beliefs differ only in terms of 

their realized values. However, with ex-ante asymmetries among the bidders, their 
beliefs differ in one other respect, as explained previously, which makes bidders 
extract additional information rents in the first-price auction but not in the 
second-price auction. Thus, it follows that without distributive distortions in an 
efficient equilibrium, bidders enjoy a higher expected payoff in the first-price 
auction than they do in the second-price auction and accordingly, the seller’s 
expected revenue is lower in the former than in the latter. 

 
 

IV. Discussion 
 

4.1. A Large Number of Bidders 
 
The difference-in-beliefs is important to obtaining the revenue ranking in 

Proposition 4, and thus, a natural question is under what circumstances the 
difference-in-beliefs disappears and, if so, what the revenue ranking would be. In 
this section, we show that as the number of bidders for each type increases, the 
difference-in-beliefs vanishes and the revenue equivalence is restored.  

Recall that the difference-in-beliefs means a type- n  bidder with a positive value 
knows that at least one of the type- n  bidders (i.e., himself) has a positive value, 
whereas other types of bidders do not know. Although this additional information 
plays an important role when nm  is small, its effect will reduce as nm  grows. 

Thus, it is intuitive that the two auction formats yield the same revenue in the limit 
as nm  goes to infinity. 

To be precise, let us increase nm  but, at the same time, proportionally decrease 

np  so that the expected number of type- n  bidders with positive values, n nm p , 
stays constant. Note that the level of competition among bidders does not change as 

nm  increases, whereas both 1 (1nm
ny p- = - + 1( )) nm

n np F b -  and (1nm
ny p= - +

( )) nm
n np F b  converge to (1 ( )) ,n n nm p F be- -  and thus, 1nmy - nmy-  decreases. That is, the 

____________________ 
8 This is because 1 1 112)1 1(1 nn n nx xx xx - - --- + + ¼- + =L  for 0 1ix£ £  and 1, ,i n= K . 
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difference-in-beliefs vanishes as nm  goes to infinity. Condition (4) never fails in 
the limit, and so the efficient equilibrium always exists in the first-price auction. 
Note also that as nm  tends to infinity (while keeping n nm p  constant), both 

1(1 ) nm
n nr p -= -  and (1 ) nm

n nq p= -  converge to n nm pe-  and, therefore, inequality 
in (5) becomes an equality in the limit. This implies that all bidders’ expected 
payoffs become identical in the two auction formats and, hence, the revenue 
equivalence follows.  

 
4.2. Continuous Distributions 

 
Our model assumes binary distribution functions for each type of bidders’ 

valuation. In this section, we study how the results in our setting are related to the 
findings in a continuous model in the asymmetric auction literature. The closest 
related works are those of Hubbard and Kirkegaard (2015) and Kirkegaard (2016), 
who consider an environment with two bidder types and multiple bidders for each 
type. 

Let ( )nG ×  be a cumulative distribution function of valuation with support 
[ , ]n nv v , where 1,2n =  and 1 2 1 20 v v v v£ £ < < . There are nm  bidders who 
draw their values from nG . Hubbard and Kirkegaard (2015) show that in a 
symmetric equilibrium with a bidding function ( )nb × , any bid b  made by a type-
n  bidder satisfies [ , ]nb b bÎ  for some b  and ( )n n nb b vº . Defining v̂  such 
that 2 1

ˆ( )vb b= , they show that 2v̂ v<  if and only if 
 

2 1 2 2 1( 1) .- - <vm bmv   (6) 

 
If condition (6) is satisfied, then type-2 bidders with a value above v̂  do not face a 
type-1 rival. Thus, there is a range of bids on which only type-2 bidders submit bids, 
called “bid-separation.”9 Kirkegaard (2016) extends these results and compares a 
range of reserve prices for which the first-price auction yields a higher revenue than 
that of the second-price auction. 

Although the assumptions in Hubbard and Kirkegaard (2015) and Kirkegaard 
(2016) do not allow for a discrete model, we may consider a continuous 
approximation of our binary distributions. Let n nv v=  and 0nv =  for all 1,2n = , 
and let nG  be any continuous distribution that approximates well our discrete 
setting, so that ) 1(n n nG v p- = -ò  for some 0>ò . It immediately follows that 
condition (6) is the same as (4), a necessary and sufficient condition for an efficient 
equilibrium in our discrete model. As bidders with a value above v̂  compete 

____________________ 
9 Note that type-2 bidders with a value below v̂  engage in competition with type-1 bidders and 

may lose against them. If condition (6) fails, then 2v̂ v=  and so 2 1b b= . Thus, there is no bid-
separation in this case. 
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against rivals with a value above v̂  when (6) holds in Hubbard and Kirkegaard 
(2015), bidders with a value nv  compete against rivals with the same value when 
(4) holds in our model. Thus, an efficient allocation in our model can be viewed as 
an extreme form of bid-separation. Next, Kirkegaard (2016) assumes a hazard-rate 
dominance of distributions (i.e., 2 1( ) / ( )G v G v  is non-decreasing) to compare the 
revenues of the two auction formats. However, our approximation of distributions 
does not satisfy this assumption,10 and so the results of revenue comparisons in 
Kirkegaard (2016) do not follow immediately.11 

Nevertheless, it is worth noting that the number of bidders affects the revenue 
ranking both in the model of Kirkegaard (2016) and in our model. Hubbard and 
Kirkegaard (2015) and Kirkegaard (2016) show that 1v̂ v®  as 1m ®¥  or 

2m ®¥ , implying that bid-separation is more likely to occur as the number of 
bidders increases. Note that as the competition intensifies, bidders’ bids become 
close to their values. From the type-2 bidders’ perspective, this means that 1v  plays 
a role similar to that of a reserve price because a bid below 1v  almost certainly 
results in a loss. Thus, the competition will effectively take place among type-2 
bidders and exclude type- 1  bidders. Recall that in our model, the efficient 
allocation does not induce revenue equivalence, per se. However, as nm  increases, 
the difference-in-beliefs vanishes and the revenue equivalence is restored in the 
limit, as explained in Section 4.1. In summary, increasing the number of bidders 
makes competing bidders effectively “symmetric” for both models, although the 
exact mechanisms differ.  

 
4.3. Inefficient Equilibria 

 
In this section, we consider equilibria with inefficient allocations in first-price 

auctions and compare the revenues of the two auction formats. Because it appears 
difficult to fully characterize an equilibrium for arbitrary numbers of bidders with 
different types, we consider the case that 2N =  and 2nm =  for all 1,2n =  and 
show that the revenue ranking can go either way. 

Consider the first-price auction. Let nF  be the cumulative distribution function 
for a type- n  bidder’s bid in equilibrium when he has a positive value, and F

nV  
denote his payoff; that is 

 
2(1 ( ) ( ),)(1 ( ))F

n n n n n n n nV p p F b p F v bp b¢ ¢ ¢= - + - -+   

____________________ 
10 Note that 2 1 2 1( ) / ( ) ( ) / (1 1 )G v G v pp= --  for 1[0, ]v vÎ ; 2 1 2( ) / ( ) 1G v G v p= -  for 1 2[ , )vv vÎ ; 

and 2 1( ) / ( ) 1G v G v =  for 2v v³ . Thus 2 1( ) / ( )G v G v  can be decreasing (because 2(1 ) /p-
1 2(1 ) 1p p- > - ). See Doni and Menicucci (2013) for a similar comparison of their model with that of 

Kirkegaard (2012).  
11 Kirkegaard (2016) assumes that the seller uses a reserve price and also compares the optimal 

reserve prices for the two auction formats. However, we do not consider a reserve price.  
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for any bid b , where 1,2n¢ =  and n n¢ ¹ . In what follows, we look for an 
equilibrium in which both 1F  and 2F  have common support [0, ]b  for some b . 
This implies that there is a positive chance that a bidder with value 1v  wins 
against a rival with 2v , although 1 2v v< . That is, the allocation is not efficient. 

 
[Figure 3] Equilibrium bid distributions for bidder types in Example 1 
 

 
(a) 1( )F b                              (b) 2( )F b  

 

 
Example 1. Let 1 10v = , 2 12v = , 1 0.25p = , and 2 0.5p = . Then, there exists an 
equilibrium with 7.94b =  in the first-price auction. 

 
Equilibrium bid distributions 1F  and 2F  in Example 1 are depicted in Figure 

3, where 1(0) 0.2888F =  and 2(0) 0F = . We denote the social surplus and the 
seller’s revenue in the first-price auction by FS  and FR , respectively. It can be 
calculated that 9.974FS = , 1 2.055FV = , and 2 4.055FV = . Because the seller’s 
revenue is the difference between the social surplus and bidders’ payoff and bidders 
with zero value earn a zero payoff, we have 1 1 2 22( ) 4.891F F F FS p V pR V= - + = . 
Next, for the second-price auction, we can show that the social surplus is 

10.093SS = , and each type of bidder’s payoff when he has a positive value is 

1 1.875SV =  and 2 3.812SV = , using the fact that it is a weakly dominant strategy for 
each bidder to bid his value. Thus, the seller’s revenue is 

1 1 2 22( ) 5.344S S S SS p V pR V= - + = . Note that compared with the second-price 
auction, the first-price auction entails a lower social surplus, F SS S< , because of 
the inefficient allocation, whereas the bidders’ payoff is higher for both types, 

F S
n nV V>  for all 1,2n = . Thus, it follows that the seller’s revenue is higher in the 

second-price auction than in the first-price auction, F SR R< . 
 

Example 2. Let 1 10v = , 2 11.5v = , 1 0.3p = , and 2 0.6p = . Then, there exists an 
equilibrium with 8.851b =  in the first-price auction.12 
____________________ 

12 Equilibrium bid distributions 1F  and 2F  are drawn similarly to Figure 3, with 1(0) 0.059F =
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The first-price auction in Example 2 yields that 10.077FS = , 1 1.148FV = , and 

2 2.298FV = . Thus, the seller’s revenue in the first-price auction is 6.629FR = . For 
the second-price auction, we have 10.182SS = , 1 1.12SV = , 2 2.42SV =  and so 

6.606SR = . Observe that although the inefficiency in allocation implies a lower 
social surplus in the first-price auction than in the second-price auction ( F SS S< ), 
the seller’s revenue is higher in the former than in the latter ( F SR R> ), because the 
bidders enjoy a higher payoff in the second-price auction. 

 
 

V. Conclusion 
 
We have identified a source of inefficiency in first-price auctions. Our results are 

driven by the difference in the beliefs of different bidder types, which is a consequence of 
ex-ante bidder asymmetries. As noted previously, our results also help us to 
understand the existing results, including those of an inefficient equilibrium, 
continuous distributions, and the role of increased competition, in the 
asymmetric auction literature. We believe our results provide valid insights into the 
roles of bidder asymmetries in auctions. 

 
  

____________________ 

20 (0)F> = . 
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Appendix: Omitted Proofs 
 

Proof of Lemma 1. For the first part of the lemma, observe that each bidder has 
a positive probability of being the only bidder with a positive value. Hence, a type-
n  bidder’s expected payoff is at least as much as 0 / (1 ) 0n nQ pv - > .  

Consider any efficient equilibrium. Observe that since a higher type always bids 
more than a lower type, 1n nb b +£  for any 1, , 1n N= -K . Now, we show that 

( )nF ×  is continuous and strictly increasing. Suppose to the contrary that there is an 
atom in the support of ( )nF ×  (which includes the case where n nb b= ). If a type-
n  bidder bids just above the point with an atom, then he obtains strictly more than 
his equilibrium payoff because it makes his winning probability jump, whereas his 
payment (which, by the first part of the lemma, is strictly smaller than nv ) 
increases only marginally. This proves that, in equilibrium, ( )nF ×  cannot have any 
atom, which also implies that n nb b<  and is a continuous function. Next, suppose 
that ( )nF ×  is constant over some interval, say [ , ] ][ ,n nb b b bÌ¢ ¢¢ . Then, a bidder of 
type- n  strictly prefers bidding b¢  to b¢¢ , because it does not change his winning 
probability but lowers his payment.13 Therefore, ( )nF ×  must be strictly increasing 
in its support.  

Lastly, we show that 1n nb b += . To see this, suppose 1n nb b +< . Given that 

1( )nF + ×  has no atom, a type- 1n+  bidder who bids 1nb +  wins only when no 
bidder of the same type draws a positive value. Therefore, his bid must be optimal 
conditional on this event. Because his winning probability does not change between 

nb  and 1nb + , his bid must be arbitrary close to nb . The same reasoning applies to 

1 0b = .  ■  
 

Proof of Proposition 3. We first show that ( 3 )  is equivalent to ( 4 ) . Because ( 3 )  
holds with equality when 1nb b -= , a necessary condition is that the derivative of 
LHS of (3) at 1nb -  is no less than that of the RHS; that is, 
 

1

1 1 1

1 1 1 1 1 1 1 1 1

1 1
.

n nm m

n n n n n n n n

n n n n n n n n n n n n

v b m m v b m m

v b v b v b v b v b v b

-

- - -

- - - - - - - - -

æ ö æ ö- - - -
= ³ =ç ÷ ç ÷- - - - - -è ø è ø

  

   
 

Rearranging the terms, we have 
 

1
1

( 1)
.n n n

n
n

m v b

m
v -

-

- +
£   

____________________ 
13 Because we focus on a symmetric equilibrium, no bidder of the same type bids in [ , ]b b¢ ¢¢ . 

Moreover, because 1n nb b +£  for all n , no bidders of different types bid in [ , ]b b¢ ¢¢ , as well. 
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This condition is also sufficient because 
 

1

1 1 1

1 1

1
n nm m

n n n n n n

n n n n

v b m v b m

v b v b v b v b

-

- - -

- -

æ ö æ ö- - -
³ç ÷ ç ÷- - - -è ø è ø

 for 1 ,nb b ->   

 

whenever 
1

1 1 1

1

n nm m

n n n n

n n

v b v b

v b v b

-

- - -

-

=
æ ö æ ö- -
ç ÷ ç ÷- -è ø è ø

 and (4) holds. This means that the  

LHS of (3) crosses the RHS from below. Since (3) holds with equality at 1nb b -= , 
the result follows.  

We now show that any global deviation is not profitable whenever a bidder finds 
local deviations are not profitable. Suppose a type- 1n+  bidder has a strict 
disincentive to deviate to , )[ n nb b b¢Î  for some 1n n¢ < -  and consider his 
deviation to 1 ][ ,n nb b b¢ ¢-Î . His expected payoff from the deviation is equal to 

 

1
1

(1 (
1

( )) ).nmn
n n n n

n

p F b
Q

b
p

vp ¢¢
¢ ¢ ¢ +

+

- -
-

+   

 
Since the bidder does not have an incentive to deviate to nb ¢ , it suffices to show that 
this payoff is less than the bidder’s deviation payoff to nb ¢ ; that is, 

 

1 1
1 1

( () ( )) ( )
1 1

.1 nmn n
n n n n n n

n n

Q Q
v b p p F b v b

p p
¢¢ ¢

¢ ¢ ¢ ¢+ +
+ +

>-
-

-
-

+-   

 
Rearranging the terms as in the local deviation case,  

 

1

1

(1 ( )) .n n n n
n n n

n n

v b v b
p p F b

v b v b
¢ ¢ ¢+

¢ ¢ ¢
¢+

- -
> - +

- -
  

 
By the same reasoning as in the local deviation case, this inequality always holds.  

Next, suppose that (i) a type- n  bidder has no incentive to deviate to 1nb +  and 
(ii) a type- 1n+  bidder has no incentive to deviate to 1nb b +> . We prove that a 
type- n  bidder also has no incentive to deviate to b . Since the result is obvious if 

nb v³ , suppose nb v< . Let ( )kR b  be the probability that a type- k  bidder wins 
when he bids b . Then, (ii) implies that  

 

1 1 1 1 1 1( ( )( ).)F
n n n n n nV b R bQ v v b+ + + + + +³ -= -   

 
Since 1nb b +> , 1 1( )n nbR Q+ +>  and 1( ) ( )n nb R bR += . Together, they imply that  
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1 1( ) ( )( ).n n n n nv b R b bQ v+ +- ³ -   

 
By (i), a type- n  bidder’s expected payoff exceeds 1 1( )n n nQ v b+ +- . Therefore, he has 
no incentive to deviate to 1nb b +> .  ■  

 
 

  



Kyungmin Kim ∙ Youngwoo Koh: Efficiency and Revenue in Asymmetric Auctions 391

References 
 

Cheng, H. (2006), “Ranking Sealed High-Bid and Open Asymmetric Auctions,” Journal of 
Mathematical Economics, 42, 471–98. 

Doni, N. and D. Menicucci (2013), “Revenue Comparison in Asymmetric Auctions with 
Discrete Valuations,” BE Journal of Theoretical Economics, 13, 429–61. 

Fibich, G., A. Gavious, and A. Sela (2004), “Revenue Equivalence in Asymmetric Auctions,” 
Journal of Economic Theory, 115, 309–21. 

Gavious, A. and Y. Minchuk (2014), “Ranking Asymmetric Auctions,” International Journal 
of Game Theory, 43, 369–93. 

Hubbard, T. P. and R. Kirkegaard (2015), “Asymmetric Auctions with More than Two 
Bidders,” mimeo. 

Kaplan, T. R. and S. Zamir (2012), “Asymmetric First-Price Auctions with Uniform 
Distributions: Analytical Solutions to the General Case,” Economic Theory, 50, 269–302. 

Kirkegaard, R. (2012), “A Mechanism Design Approach to Ranking Asymmetric Auctions,” 
Econometrica, 80, 2349–64. 

Kirkegaard, R. (2016), “Ranking Asymmetric Auctions with Two Groups of Bidders,” mimeo.  

Lebru, B. (1999), “First Price Auctions in the Asymmetric N  Bidder Case,” International 
Economic Review, 40, 125–42. 

Lebrun, B. (2006), “Uniqueness of the Equilibrium in First-price Auctions,” Games and 
Economic Behavior 55, 131–51. 

Maskin, E. and J. Riley (1985), “Auction Theory with Private Values,” American Economic 
Review, 72, 150–5. 

Maskin, E. and J. Riley (2000), “Asymmetric Auctions,” Review of Economic Studies, 67, 413–
38. 

Plum, M. (1992), “Characterization and Computation of Nash-Equilibria for Auctions with 
Incomplete Information,” International Journal of Game Theory, 20, 393–418. 

 

 


