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According to capital-asset pricing model, the risk premium on a security
is proportional to the beta coefficient. In the traditional model (Sharpe
1964), the market beta determines the risk premium; according to the
consumption-based model (Ereeden 1979), the consumption beta determines
the risk premium. In this paper, working with the consumption-based model,
we present a likelihood-ratio test of the model, which tests whether indeed
the mean rate of return is a linear function of the beta.

In part 1 we review the econometric procedures previously used to test
the standard capital-asset pricing model, and we discuss problems with
these procedures. One methodology is the “one-pass regression test for
zero intercept,” and another is the “two-pass regression test.” At present
there are no published tests of the consumption-based CAPM. In part 2,
after we state the assumptions in the model and describe the null hypoth-
esis we wish to test, we demonstrate the test procedures. In part 3 we

draw the conclusion.
|l. Review of CAPM Tests

a) One-pass Regression Test for Zero intercept
The Standard capital-asset pricing model developed by Sharpe (1964) and
Lintner (1965) states.

Et (Rn)—Rn:OOCOVt(Ru,Rtm). (1)

Herde a denotes the relative risk aversion; E.R.) is the expected of
return during period t on asset i;R. is the risk-free interest rate; R. is

the rate of return on asset i;Rw is the rate of return on the market
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portfolio of all assets, which includes human wealth as well as non-human
wealth. The subscript t on the expected value and the covariance signifies
that they are conditional on all information available at the beginning of
period t. The model (1) states that the risk premium is proportional to the
covariance of the rate of return with the rate of return on the market
portfolio.

Jensen (1968) derives the “one-pass regression test for zero intercept.”
From (1), it is straightforward to show.

E(R.-R)= BE.(R.—R.). (2)
,Where (B is Cov(R.,R..),Var(R..).
Consider the least—squares linear regression of Ri—R. on Rw—Ru:

Ri—Ro= i+ B{Rw—Ru)+eu. (3)
By(2),00,=0. Hence one can test the standard CAPM by regressing R.—R..
on Rw—R. in a time-series analysis. The null hypothesis is that the
coefficient of the constant term is zero. Jensen (1968), Friend and Blume
(1970), and Black, Jensen and Scholes (1972) perform this test.

Using data on annual period returns for various mutual fund shares,
Jensen (1968) finds that the intercepts differ quite a bit from zero.

Friend and Blume (1970) use an average of the returns on common stocks
listed on the New York Stock Exchange as R.. and base the time series for
R« on the returns on Treasury bills. Analyzing the monthly holding period
return Ri on portfolios of large numbers of common stocks listed on
NYSE, they regress Ri—R. in Rw—R. for many portfolios. They find a
linear relationship between the estimated intercepts and the estimated S.
When B.>1, the intercepts tend to be negative; and when B.<1, the
intercepts tend to be positive. They interpret this finding as evidence
against the hypothesis(2).

They note that mismeasurment of R.. might account for their findings.
They also note that correlation among the residuals of the different
regressions related in a systematic way to the intercepts and the slope
would reconcile their findings with the model (2), but they conjecture that
such a relationship does not hold. However their graphs do suggest that
such a relationship does exist.

If the residuals among different securities are cerrelated we have a
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non-diagonal variance-covariance matrix of the error terms for the model
(2) One cannot apply the usual T-test to test the zero intercept; instead,
one must use an F-test.

Unfortunately one cannot adopt the one-pass regression test for zero
intercept to test the consumption-based model.

b) Two-pass Regression Test

Several investigators Sharpe (1965), Miller and Scholes the traditional

CAPM by a two-pass regression procedure. They test whether.

Hi=f+gp (4)
is a good model for the holding period returns on securities, where the
parameters f and g are stable through time. Here #. is E(R.) and fi is
Covi(Rs,Rwm)/Var{R..). They assume that f,g, Varst(Rs), Var{Rw.), and the
correlation of Ry and Rw are the same for all time periods.

Since g and [ are not observable, they adopt the “two-pass regression
test.” At the first pass, they regress R. on the R.. to obtain the least-
squares estimates #* and f*. At the second stage, one runs a least-
squares regression of #* or f3* to obtain estimates of f and g. One accepts
the capital-asset pricing model if the following are true. The estimate of f
must be reasonable value for the riskless rate of return. The estimate of g
must be positive, a reasonable price of risk. And the second stage R? is
high (it will be high if we have many years of data and if the model is
valid).

Using data on annual hold king period returns on various mutual fund
shares, Sharpe (1964) notes that the correlation of these returns with an
average of the returns on these common stocks used to compute the Dow
Jones Industrial Average is near one. Estimating the means and standard
deviations of these returns over a ten year period, he regresses the
estimated means for the various shares on the estimated standard devia-
tions. If the model (4) is valid and the correlation of the returns with R is
near one, the constant term in the regression is an estimate of Rw.; and the
coefficient of the standard deviation provides an estimate of the gk. Sharpe
finds that the constant term is a plausible value for a riskless rate of
return and that the coefficient of the standard deviation is positive. Noting

graphically that the relationship between the estimated means and the
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standard deviations is roughly linear, he concludes that his result supports
the model(4).

Fama and MacBeth (1973) include [ to test for a non-linear relation
between # and f. They find that non-linear terms are significantly
different from zero over some sample periods and offer a possible explana-
tion for the significance of the non-linear beta term; viz, they suggest that
there are omitted variavles from the theory for which the non-linear terms
act as a proxies. If some omitted variables help explain the error term, the
variance-covariance matrix of the error terms V may not be diagonal
matrix. Miller and Scholes (1972) also have results similar to Fama and
MacBeth.

Levy (1982) argues that even if beta is constant over time and there are
no biases in the estimation of S in the first-pass regression, we cannot
reject the standard CAPM (4), especially because of the uncertainty of f.

Since this two-pass methodology can be adapted to test the consumption-
based model, here we will discuss several problemes. At the second stage,
one treats the (3 as known exactly. One then uses least-squares to estimate
f and g. Although the estimate is consistent under very general assump-
tions, the estimates are inefficient, unless the variance-covariance matrix of
the Ru is proportional to the identity matrix. More important, the computed
errors are extremely misleading.

The important problem is that actually the /3 are estimated, not known.
(One must take the error into account when one estimates f and g.)
Allowing for the error will of the estimates and will affect the calculation
of their standard error.

Users of the two-pass procedure demand a high R? at the second pass.
However the estimates #* and f* will not perfectly correlated even if
there does exist a perfect linear relationship between # and S3. The size
of the correlation will depend on the error of measurement. One requires a
proper test whether # is a linear function of 3, in which one takes into
account the uncertainty in (.

Even if the sizes of the estimates f and g may be “reasonable”, equation
(4) yet man not hold. The two-pass procedure does not relly test for a

linear relation between the # and the pS.
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To overcome these deficiencies, in the next part, we derive the likeli-
hood-ratio test of CAPM.

I. Maximum-Likelihood Estimation

a) Assumptions

Let R. denote the n-vector of the rates of return on asset i observed at
time t. Define C,. as an unexpected change and R. are joint white noise,
normally distributed with constant mean (E(c.)=0 and E(R.)=#:) and a
constant variance-covariance matrix. Also we assume that each period we
can observe an unexpected change in permanent consumption c. describing
the aspect of the state of the world.

Let

Ri= t+4 Bica+tes (5)
denote the least-squares regression of R. on c.. Since c. has mean zero,
the intercept is 4. We have (/Cov(R.,c,)= Var(c.), which is independent
of time. The vector e. of error terms is white noise, independent of ¢, with
E(e))=0 and Var (e.)=V.

According to the permanent-consumption-based capital asset pricing mod-
el, the mean rate of return # on security i equals the risk-free rate of
return f plus the price of risk g multiplied by its beta coefficient S,

p=f+gB., (6)
for coefficients f and g which are independent of i. We test whether # is a
linear function of 3, by a maximum likelihood-ratio test. The linear
constraint (6) embodies the hypothesis that the capital-asset pricing model
is valid. We test the null hypothesis against the alternative hypothesis that
there is no particular relationship between mean and beta. We perform
such a test based on the assumption that # and (i are the same for all
periods.

b) Maximum Likelihood Estimation

Let us define Y as the TXn matrix of the observed rates of return.
Then the matrix form of (5) is

Y=1#"+c B/+E, (7

where # and (3 are n-vector of unknown parameters; E is the TXn matrix
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of normally distributed error terms; i. and ¢, are T-vector of ones and the
change in consumption.
We define X as the T X2 matrix of independent variables,
X=[1: ¢, (8)
in which 1r is a T-vector of ones and ¢, is the T-vector of the c.. We

assume rank(X)=2. We-define [ as the 2)Xn matrix of regression coeffi-

cients.
B=[# BJ. 9
Then we rewrite (7) as
Y=XB+E. (10)
We rewrite the linear constraint(6) in the symmetric form
pB’+ql"=0. (11)

Here p is an unknown column 2-vector p=|p;, p:|’ and q is an unknown
scala; 1. denotes a n-vector of ones. We have f=—q/p: and g=—p/p.. We
add the constraint
p(XX)'p=1, (12)
since otherwise p and q would be identified only up to some multiple;
(12)identifies p and g up to the sign. We assume n>3; otherwise the
constraint on B would be meaningless.
We find B to maximize the likelihood. We treat c, as exogenous, with
sample mean O (1+'¢,=0) and sample variance ¢ %c,’c,=T o 2). Treating c.
as exogenous, we work with the likelihood conditional on ¢,. The variance-

covariance matriXV is known. Since
T ’ ’ ’
SeV'le=trEVE'=trE'EV-,
t=1

the value of the log of the likelihood function is
¢nL.=(—nT/2) ¢n2lI4(T/2)¢n | V' | —(1/2) tr E'EV~. (13)
Therefore the maximum-likelihood estimate minimizes tr E'EV-'.

If B were unconstrained, it is well known that one would obtaih the
maximum-likelihood estimate 5 * of B by applying ordinary least squares to
each of the n equations in (10).

We have
B*=X'X)"'X"Y. (14)
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The log of the likelihood is

¢nL*=(—nT/2)¢n 27 +(T/2)¢n | V' | —(1/2)tr E*’'E*V-, (15)
in which E*=Y —XB* denotes the estimated error matrix. We define

$ *=p'B*+ql., (16)
which measures the extent to which the unconstrained estimate B* fails to
satisfy the linear constraint(11).

We wish to maximize the likelihood(13), subject to the linear
constraint(11) and the identifying constraint(12). We use Lagrangian max-
imization. One could define the Lagrangian

H= ¢ nL—(p'B+4ql.") 7 — 0 (p"(X"X)"'p—1), (17)
in which 7 is an n-vector of Lagrange multipliers and @ is a scalar
Lagrange multiplier for the identifying constraint.

This technique divides the maximization into two steps. At the first step,
we assume that p and q are know and satisfy the identifying constraint(12).
We find B(p, q) to maximize the likelihood, subject to the linear
constraint(11). Substituting B(p, q) into the likelihood gives tke concen-
trated likelihood, a function of p and q. At the second step, we find p and q
to maximize the concentrated likelihood, subject to the identifying
constraint(12).

For step one, we define the Lagrangian

J=¢nL—(p'B+ql.) 7. (18)
Differentiation with respect to the parameters yields the firstorder neces-

sary condition;

0J/9B=X'Y—X'XB)V-'—p7 =0, (19)
Premultiplying by (X'X)™' gives

(B*—B)V' —(X'X)"'p7 '=0. (20)
Premultiplying by p’ and using the (11) and (12) yields

7y =V-(B*'p+1.q). (21)
We can then rewrite (21) as

B=B*—(X"X)"'plp'B*+ql."]. (22)
The expression in the bracket [ | in (22) measures the extent to which the

unconstrained estimate B* fails to satisfy the linear constraint (11). Equa-
tion (22) says that B=B* if the unconstrained estimate B* happens to

satisfy the constraint exactly.
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For step two, we first derive and then maximize the concentrated
likelihood function. By (22),

E'E=(Y—XB)’ (Y—XB)
=[E*4+-X(X'X)'p(p'B*+q L )NE*+(X"X)"'p(p’'B*=q1.")]
=E*'E*+(B*'p+1.q)(p'B*+ql.),

since E*X=0 and p'(X’X)'p=1. Therefore,
tr E'EV-'=tr DE*'E*V-'"4tr(B*'p41.q)(p'B*=q1. )V (23)
=tr E¥E*V'4(p'B*+ql.)V'(B*'p+1.q).
Substituting this expression into (13) gives the concentrated likelihood.
¢nL=(—nT/2)¢n2x +(T/2)¢n | V' | —(1/2)tr E*'E*V"! (24)
—(1/2)(p'B*+q1.)V(B*'p+1.q).
At the second step, we maximize ¢ nlL, subject to the identifying
constraint(12).
Because, in (24), tr E*'E*V~! is independent of p and g, our problem is
the following:
min(p'B*+q1.")V-'(B*'p+1.q), (25)
pP.q
subject to the identifying constraint (12). We minimize a quadratic function
subject to a quadratic constraint. We define the Lagrangian
H*=(p'B*+4q1. )V (B*'p+1.q)— A [p'(X'X)"'p—1], (26)
in which A is a scalar Lagrange multiplier for the constraint. Differentia-

tion with respect to the p and q yields the firstorder necessary conditions:

oH*/ 9 p=(p'B*=ql.)V'B*— A p(X'X)'=0, (27)
and

dH*/ 3 q=(p'B*+4ql.)V-'1,.=0 (28)
From(28),

g=—p'B*V-'1./1."V-l.. (29)
Substituting this value for q into(27) yields

p'B*MB*'— 1 p'(X'X)'=0 (30)
in which

M=V-1—V-1.1.'V-/1.'V-'l.. (31)
Equivalently,

(X’X)?B*MB*"(X’X)"2J(X'X) V2p= A (X"X) *?p. (32)

We can rewrite the matrix in brackets as
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T[ HMpe £*'Meo B+ ] (33)

U*’M,u* dzﬂt’Mﬁm

where #* and B* are the unconstrained OLS estimates. Equation (32) says
that (X’X)'?p is an eigenvector of (X'X)"?B*MB*(X'X)"?, with eigenvalue
A.

We have reduced the minimization to an eigenvalue problem:we simply
find the eigenvalues and eigenvectors of the matrix. There are two solu-
tions to the first-order conditions, one for each eigenvalue. Which eigenva-
lue yields the optimum ? Since the matrix M is positive definite, the
matrix(33) is positive semi-definite. So both eigenvalues are non-negative.
Postmultiplying (27) by p and multiplying (28) by q and adding yields

A =(B*p+ql.")V(B*'p+1.q); (34)
A therefore equals the value of the objective function in (25). Consequently
the optimum is dthe smaller eigenvalue.

Given any eigenvalue A in equation (32), one can determine parameter
estimates which satisfy the first-order necessary conditions. The vector
(X’X)"?p must be the eigenvector for A, normalized so that he identifying
constraint(12) holds. One can then determine B and A from the
equations(21) and (22).

One can understand this result better by considering a special case.
Suppose that by coincidence there exists an exact linear relationship
between the unconstrained estimates #* and f*:

pr=fl.4gpB*. (35)

Then the matrix (33) equals the following matrix with rank one,

Teemp () [ ga]'_

Therefore the smaller eigenvalue is A =0, and one can calculate
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Conseqently the coefficients f and g in (35) are the maximum-likelihood
estimates.

Finally we test the linear relation (11) by a likelihood-ratio test. The
equation (11) embodies the null hypothesis that capital-asset pricing model
is valid. We test the null hypothesis against the alternative hypothesis that
there is no particular relationship between # and S. The null hypothesis
places n—2 restriction on the parameters. Define ¢ =L*/L., the ratio of
the unconstrained likelihood to the constrained likelihood. Comparing (13)
and (15) reveals

—2¢n¢ =tr E'EV-' —tr E¥E*V~! (36)

= .
If the null hypothesis is valid in a large sample, the smaller eigenvalue A
therefore has a chi-square distribution with n—2 degrees of freedom; one

éccepts the capital-asset pricing model as long as A is not too big.

I. Conclusion

In this paper we derive a maximum-likelihood estimate of return is a
linear function of the beta coefficient. We estimate the model subject to
this constraint, using Lagrangian maximization. Calculating the likelihood-
ratio for the constrained versus the unconstrained model tests whether the
CAPM is valid. Especially we show that the likelihood-ratio is the smaller

eigenvalue of the matrix consisting of the unconstrained OLS estimates.
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