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UNDER STRUCTURAL SPECIFICATION UNCERTAINTY
IN A SIMULTANEOUS EQUATIONS MODEL

Jin-Ho Jeong*

ABSTRACT

In the context of a linear simultaneous equations model, this study indetifies two
major reasons for the generally poor predictive performance of almost all the
traditional reduced form forecasts. Some of them do not have finite moments in small
samples and hence adversely affected from the departure from normality. All of them
treat overidentification restrictions in an exact manner, and hence produces erratic
behavior under misspecification. Forecasts based on these reduced form estimators
are also subject to unbounded risk in these situations since they are the linear
combination of reduced form estimators. In search of reduced form forecasts with
lower risk consequences, this study compares the parametric and nonparametric risk
measures of the forecasts in Monte Carlo experiments. The forecasts include the
recently proposed the Modified Stein-like Reduced Form (MSRF) and the Generic
Reduced Form (GRF) estimators, along with unrestriceted, restricted, and partially
restricted reduced form forecasts. And the experiments are controlled by the key
model parameters developed in the small sample theory. The results of this study
show that the lower centrality and/or misspecification, rather than the sample size
change that used frequently in the asymptotic theroy, is the main source of the
unbounded risks of traditional reduced form estimators. Especially the traditional 2SLS
and 3SLS based forcasts have non-negligible probability for producing outliers. To
summarize the result of this experiment, the lower risk reduced form forecasts, which
have flexibility in adopting uncertain structural information according to its sample

validity, should be used for prediction or policy analysis.

I. INTRODUCTION

In the context of a linear simultaneous equations model, this study examines two
major reasons for the generally poor predictive performance of almost all the
traditional ‘restricted (or Derived)’ Reduced Form (DRF) estimators which are derived
from structural coefficient estimates. First, in finite samples, the non-existence of
moments for some estimators results in unbounded forecast intervals. Second, serious

misspecifications affect forecasting adversely in a number of ways. Unlike these
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derived reduced form estimators, the ‘Uurestricted Reduced Form (UFR) estimator
(which is computationally simple but inefficient) possesses moments of all orders and
is consistent even under certain types of misspecifications,

Recently two lower risk reduced form estimators for a linear simultaneous equation
model have been proposed by Maasoumi (1978, 1983, 1986). One is the Modified
Stein-like Reduced Form (MSRF) estimator which combines URF and DRF estimators
according to a Wald-type specifcation test. The other is the Generic Reduced Form
(GRF) estimator which mixes URF and DRF via a matrix weight of precision
contributed by sample and non-sample information. The statistical improvement of
these estomators in terms of general quadratic loss criteria is obtained through finite
sample justification and explicit control over specification uncertainty. It is also
expected that forecasts based on these lower risk reduced form estimators would
outperform, in terms of quadratic risk, forecasts based on various standard reduced
form estimators. Maasoumi and Jeong (1988) reports some properties of these and
other traditional structural form and reduced form estimators in macroeconometric
applications and in experimental studies.

An experimental investigation of the predictive performance of these
combined (mixed) estimators along with other unrestricted, restricted (derived), and
partially restricted reduced form estimators is the prime concern of this study. Analytic
results from the small sample theory are used carefully to guide the expermental
design in order to minimize the loss of generality faced in usual Monte Carlo studies.
Sargan (1976a), Anderson, Morimune and Sawa (1983), Mariano (1982) and phillips (1983)
uncovered the key model parameters from the exact probability density function of
a single equation instrumental variables estimator, which affect the location, dis-
persion, and shape of the density. Rhodes and Westbrook (1981), Maasoumi and
Phillips (1982) and Knight (1986) examined the effect of exclusion type misspecifcation
on the density through changes in these parameters. The different experimental
situations examined here are characterized by the changes in these parameter values
from those under standard assumptions such that experiments become more
controllable.

The predictive distributions obtained from the standard and nonstandard reduced
form coefficient estimates are examined under three types of situations which occur
frequently in applied econometrics : (1) small sample size hurting asymptotic
justification, (2) lower concentration causing departure from normality, and (3)
exclusion-inclusion type misspecifications. The experimental results under these
conditions are compared relative to a standard situation using parametric and
nonparametric statistics, and some of the important results are highlighted by
contrasting the sampling densities and cumulative distributions of the lower risk
reduced form forecasts to those of the traditional reduced form forceasts.

Major conclusion drawn from these experiments is that the nonstandard combined
reduced form forecasts outperform the traditional restricted, partially restricted, and

unrestricted reduced form forecasts under general risk rankings, except some tied
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rankings of the GRF forecasts under wunsure specifcation with the DRF-FIML forecasts
under reduced sample size and under lower centrality. Risk rankings of various
forecast distributions are presented using both parametric and nonparametric criteria :
the root mean squared error (the standard deviation of forecasts) ranking and the
quintile (80% range length) ranking . Contrarily to traditional beliefs in analytic studies,
the FIML forecast performs very well in small samples under correct specification,
and reasonably well under low centrality and even under misspecifcation. The
reasonable performance of FIMI. predictors may be due to existence of finite moments
and the higher centrality, because the DRF-FIML forecast is the only standard efficient
SEM forecast which has some finite moments. The DRF-2SLS forecast exhibit the
worst performance in this experimental study. This is an important result when we
consider its popularity amongst applied macroeconomists despite more than a decade
warnings about its unbounded forecast interval from small sample theoriests.

The paper is organized as follows., After a brief discussion about forecasts,
various types of reduced form estimators are introduced along with those
characteristics relevant to the distribution of forecasts in the next section. The
experimental design is summarized in Section 3. And discussions on the experimental

result and conclusion follow in the sections 4 and 5.

I. FORECASTS AND REDUCED FORM ESTIMATOR

The aim of predictive inference is believed not to fit a probability model to the
data, but rather to choose a probability distribution which depicts well the random
behavior of future samples that may be either independent of or correlated with the
observed data. This view is shared by Aitchison (1975), Akaike(1977) and Lari-
more (1983) among others. In the context of forecasting from a simultaneous equation
model it is well known that ‘good fit" in terms of structural residuals does not
necessarily imporve the prediction of a random phenomenon different from but related
to that being observed. The fundamental problem is that the choice of the reduced
form estimator gives different probability distributions of forecasts for the same
specifications and data employed. The implication is that the same nonsample and
sample information may not have the same predictive inference. Suppose that a vector
of n endogenous variables, y., t=1,2,..., T is generated by the reduced form
equation y( = P’z, +v,, where z, is a vector of m non-stochastic exogenous variables
with Z°Z/T=M+ 0(1/T), M being positive definite, and v, is a set of random normal
errors, that are serially independent, and distributed N{(0O, Q) for each (. P is an
m X n matrix of reduced form coeffcients, The ‘k-period ahead forecast’ of y based

on available information at time 7T, 37-;-‘,. is given by
(1) :Q;T +h = ﬁ’Zrm

where z2r,. iS a vector of a priori known values of m exogenous variables for time
~

T+hand P is any consistent estimator for P. The forecast error for a one-period

ahead forecast is given by
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2 1,;nl = gru = Yru
= (ﬁ-P)’zfﬂ ~ Vry
The forecast error is therefore decomposed into two parts : the first part
representing the errors in estimating P by a consistent procedure which will be
discussed below, and the second part representing the disturbances occuring, at time
T+ 1 Vectorizing (2) with respect to P gives

3 Dy = (1/VTHLn® 25 ) VT (D) = Vrus

where p denotes a mn dimensional column vector stacking the columns of P one
underneath the other to form a single vector and & denotes the Kronecker product.
For a chosen consistent and asymptotically unbiased estimator IA’ for P, as shown
by Goldberger, Nagar and Odeh(1961) the forecast error vector has zero asymptotic

mean,
@  E(.,) =0

with asymptotic variance covariance (AV) matrix

6 AV(Dr) = F (o) AV (T(Pp)) (leo20) + Q.

Using these results, we know that the efficiency of the forecast is related to the
efficiency of the reduced form coefficient estimator for a given set of future values
of exogenous variables z;.,. Not only the asymptotic properties but also the small
sample properties of the reduced form estimators directly affect the properties of the
forecasts. Therefore we will examine the various types of reduced form coefficient
estimators in order to make conjectures about the probability distributions of the

forecasts.

1. Unrestricted, Restricted and Partially Restricted Reduced form Forecasts

Unrestricted Reduced Form Forecast.

If P consists entirely of unknown constants and does not depend on any other
parameters, the reduced form model becomes a special case of seemingly unrelated
regression model of Zellner (1962) with identical regressors. It is well known that the
ordinary least squares estimator applied to this model is as efficient as Aitken’s
generalized least squares estimator. The unrestricted least squares (ULS) reduced form

estimator of P is given by

®  Pus=(22)72Y

with the asymptotic distribution
(M) VTvec (Py—P) ~ N(0.Q®M)

where X=[Y Z] denotes T X (n+m) data matrix, and plim(Z Z/T)=M, M being a

positive definite constant matrix. The ULS estimator ignores individual structural
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differences of the endogenous variables but makes its forecast error orthognal to the
design matrix of all exogenous variables and exhibit minimum variance property for
whatever data given. As long as data has full rank, its forecast also has finite
moments of all orders. It is inefficient but computationally simple and consistent if
the design matrix contains all relevant exogenous variable.

Restricted Reduced Form Forecast.

If P consists of unknown constants but depends on other elements of the included
(unconstrained) structural parameter vector a from the complete structural form, then
the reduced form coefficient estimates may be derived from the consistent and efficient
structural estimates of a. The restricted (derived) reduced form (DRF) estimator of

P is given by

(8 P =P@
= -Ch™

where the complete structural form, YB+ZC =XA=U, with E[U]=0, and E[U U] =
X, is assumed to have the (m +n) X =n structural coeffcient matrix A~=[§’ : 5’]
consisting of zeros and the elements of particular estimates of « identifiable from
the reduced form coeffcient parameters,

The structural form representation of the sample information X, XA = U, explicitly
models the joint endogeneity that exists among elements of y,. Under the assumption
that no restriction is imposed on covariance matrices, following Sargan(1976a, P.
437), we may reparametrize the overidentifying restrictions as the “specification
projection” from the included sturctural coeffcient vector « into the restricted structural

coeffcient matrix 4.
(9) wvec(d) =s - Sa

where s normalizes the diagonal elements of B, and § imposes linear dependency,
or simply exclusion restrictions. For the latter case § has dimension
n(n+m) X (n(n+m)~q), where ¢ represents the number of linearly independent
restrictions, We call (9) as ‘specification constraints’ since it summarizes the structural
link of the jointly endogenous variables.

In terms of this specification constraints, we now consider the 3SLS coeffcient

estimator of «

(10)  dyge= (S(E0XX) ) (S(E"08") y)

which has asymptotic distribution

(11) VT (G —a) = N(O.(S(E " ® QMQ)S)™")

where X = Z[I3 1] = Zé, QA=[16 : 1], is the ULS projection of Z into X with plim

A

¢ = ¢, and ZA is any consistent estimator of .
Now we substitute the specification constraints vec (Z —A)=S(c;--a ) into the vectorized
form of the identity P-p= —Q(Z—A)g", as in Dhrymes (1973, p121). Then we obtain

the following relations.
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12) T (Bags— p) = - (B0 §) ST (G5 - )

from which the asymptotic distribution of the derived reduced form based on 3SLS
(DRF—3SLS) can be obtained.

Asymptotically, the derived reduced form estimator P behaves like a linear
transformation of the structural estimator & as explained in Rao(1973) in the ano-
ther context.

So the efficiency of the reduced form coefficient estimator, and hence that of the
predictor, is directly related to the efficiency of the structural coefficient estimator.
When the information contained in the contemporaneous covariance matrix Y= B 6B
is ignored and ZA in (10) is replaced by an identity matrix I, the resulting 2SLS
estimator (DRF-2SLS) becomes asymptotically less efficient. When the ULS projection
)E=Z[IA’ : 1] in the same equation is replaced by the iterative DRF projection X=
Z[- CB': I] based on the jointly estimated structural FIML estimates @ ..., the
resulting FIML reduced form estimator (DRF-FIML) becomes more efficient as
recognized by Hausman (1975).

However, these asymptotic properties of the DRF estimators usually break down
in small samples. If there are overidentifying restrictions on the structural equations,
the derived reduced form coefficients from 2SLS or SSf,S will in general possess no
integer moments (Sargan;1976b). The fact that the FIML estimator is independent of
the normalization rule means that the FIML estimate of a structural coefficient can
be interpreted as the reciprocal of another FIMIL estimate under a different
normalization, This implies that the distribution of such an estimator has no integer
moments. Mariano (1982) and Phillips (1983) provide an excellent guide on the
non-existence of moments issues and other finite sample resulls. These properties
influence the probability of outliers in the derived reduced form coefficients and hence
directly affect the distribution of the forecasts adversely, because the forecast interval
depends, among other things, on the first two moments (mean and variance) of the

reduced form coefficient estimators.

Partially Restricted Reduced Form Forecast.

If P incorporates overidentifying restrictions of a single structural equation at a
time, then the partially restricted reduced form (PRRF), based on (I ®@Q)(s-8Sa)=0,
or P=(I®@J)Sa, would be an appropriate estimator, As an approximation, we sub-
stitute é= [f’: 1] for @ and ass for a, then we get the PRRF estimator pre of p

(13) Bor = (I® a)S&ZSLS

which has 13“ PRRF = éSt (;y,zy/,s of Kakwani and Court (1972) as a special case when
specification constraints are separable.

One feature of PRRF is that it can avoid serious misspecification by replacing
a doubtful structural equation with an unrestricted reduced form equation. However
Kakwani(1975) and Knight (1983) showed that PRRF is neither efficient nor inefficient
relative to ULS and is less efficient relative to DRF-2SLS. S-B. Park(1982) studies
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a forecasting property of PRRF that it produces the same forecast as ULS and
DRF-2SLS when exogenous variables have the values of their sample mean in the

forecast period.

2. Improved Reduced form Forecasts

The fact that many of the popular DRF estimator possess no integral moments
and that standard efficient estimators are irresponsive to structural misspecification
has led to the search for the lower risk estimators. Members of the class of lower
risk reduced form estimators in Jeong(1985) are the reduced form coefficient
estimators which possess finite moments up to some orders in small samples and
which, by their construction, incorporate a priori structural information according to
either data admissibility for given specified significance levels or the assessed level
of specification uncertainty., This class has the mixed (or combined) reduced form,
a mixture of the URF and the DRF, as its typical form. These estimators combine
ULS and DRF estimators in various ways in the hope that the behavior of the

predictive distribution of these combined estimator is improved.

Pretest Based Reduced Form Forecast.

If P is subject to structural misspecification, then the use of the Modifed
Stein-like Reduced Form (MSRF) estimator of Maasoumi(1978) will combine the ULS
and DRF-3SLS estimators, by a shrinkage parameter A such that

(14) ﬁusRI = Aﬁssu‘ + (1 - A)ﬁw.s

where

1, if <6
A=
3 e,/ ¢, if @>0C,.

The scalar weight depends on the preliminary test of the overidentifying restrictions
using Wald-type specifcation test statistics

(15) @ = tr(Q(P-Puis)(Z'Z)(Prssis )

where =Y’ (I—Z(ZZ)'Z')Y/T and ©, is the asymptotic critical value of the test
corresponding to the chosen significance level. Under serious structural misspecification
the value of A will become smaller than 1 and the MSRF forecast will be pulled
toward the ULS forecast, and hence it is deemed necessary to discard some portion
of the structural specification in favor of sample information.

The MSRF estimator has a simple struture and its implication is unambiguous.
The scalar stochastic mixing weight combines URF and DRF only in reference to the
validity of the parameter constraints for a specified significance level. As
demomstrated in Maasoumi(1978), it possesses the first(7T-n-m) moments in finite
samples, that is, as many moments as the DRF-FIML estimator. Moreover, its limiting
moments approximate the moments of the asymptotic distribution of DRF-3SLS with
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reasonable sample size. Hower, it is still interesting to examine the sensitivity of MSRF
to the erratic small sample behavior of the Wald type asymptotic test on which MSRF

is based.

Generic Reduced Form Forecast

If P is specified as being generated by a practically known distribution function
so that the vectorized coefficient constraint holds only stochastically, that is,
E[PB+C]=0o0or PB+C=0 P being the mean of P, then the GRF estimator of p
provides the predictor of the matrix weighted average form which is well known in
the Bayesian analysis of the multivariate regression model (Chamberlain and
Leamer (1976), for example). Maasoumi's (1983, 1986) (empirical) choice of the GRF

estimator of p is given by
(16) By = W'y + (1 = F*) Py

where W* is the nm X nm stochastic weight matrix which reflects the precision
contributed by the sample information in relation to the posterior precision matrix
contributed by prior specification precision (}i', which in turn depends inversely on
c, the experimentally determined degree of specification uncertainty, and proportionally
on the square root of the sample size. See Jeong (1985) or Maasoumi(1986) for details
for the derivation of W* In our experiments we choose ¢=1.0 for ‘unsure’
specification and ¢=0.05 for ‘certain’ specification.

Under uncertain structural specification, the forecast based on 13“; may reduce
to the ULS forecast as ¢— oo or to the DRF-3SLS forecast as ¢— 0. The limiting
properties of i)c[u: indicate these features. For given initial choice of Q. which has
smallness of order 1/+/T or less(T*? in our experiment), W¥* converges to I such
that IA’W — f’ULs as sample size increases. For given 7, W¥* converges to O such
that i’m — f’ms as specification uncertainty is reduced (Q.—0), and W¥* converges
to I such that f’cm- _‘i)m,s, as specification uncertainty increases (Q.,—<°). Given that
limit,  TQ. is a constant, W* converges to some limit, W* such that a mix of

I';uLs and f’ms defines IA’G”. Its asymptotic variance matrix, AV, is given by
(17) AV(?’GRI) = AV(IA)JSLS) + W*[Ay(ﬁw,s) - Ay(ﬁasu) ] W*'

In finite samples the GRF estimator Igm may have finite integer moments up to order
k/2, k being the total degrees of overidentification, (as many moments as the struc-
tural 3SLS estimators can possess under the same situation). By its design, the GRF
forecast is responsive to structural misspecification, so it is expected to behave well
in small samples.

Differences in the modelling environments and in the design of the reduced form
estimators will directly affect the predictive distributions. The choice of the reduced
form estimator matters in forecasting, i.e., the formation of future expectations. We
want to examine the forecasting properties of these estimators in the experimental

situation which resembles key features of the reality.
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. EXPERIMENTAL DESIGN, SMALL SAMPLE THEORY, AND MONTE CARLO METHODS

Different experimental designs and Monte Carlo methods may favor particular
estimators, hence the conclusions from these experiments may be ‘design’ specific
and are not as informative as they could be for general use, Therefore, in
experimental design, it is important to reduce the parameter spaces to an essential
set in order to identify the critical parametric functions which influence the shape
of the relevant small sample distribution. The usual procedure in analytic small sample
theory is to implement the standardizing transformation which reduces the sampie
second moment matrix to the sample proportional identity matrix and the covariance
matrix of the disturbance vector to the canonical form. In our experimental design,
the conditions under which predictors perform differently are characterized by the five
key model parameters which are frequently used (o represent the canonical form of
the exact distributions of simpler estimators. We consider the following five key model
parameters to describe the changes in our experimental situations : (a) the sample
size, (b) the sampl cross moment matrix of exogenous variables, (c) the degrees
of overidentification, (d) the non-centrality (concentration) parameter” and (e) the
sample variability of the systematic components of Y relative to random components.
We introduce two basic models whose predictors from eight reduced form estimators

are examined in four different experimental situations.

[Table 1] Two Basic Experimental Models

Model A Model B

(a) structural parameters

a’=(a ta,”) [becc,: byec.cy,) (bieic,eyt byey)
=[-5.5-75-4040-1.6) =(-.5.5-.75 40 -4.0 -1.6)
A'=(B":C") 1 -5:.5-7500 1 -.5:.5-75400
-4.01:004.0 -1.6 -4.01: 0 00-1.6
2 .0 .5 same as Model A
.5 1.0
(b) reduced form parameters
P’ .5 -7 2.0 -8 .5 -7 40 -8
20 -3.0 40-16 2.0 -3.016.0 -1.6
Q. -1 1.75 6.0 28.0 -8.0 same as Model A

6.0 21.0 -80 2.33
(c) log-likelihood values
2 IniBi-ln|Q1(2.0) (0.0)~In (. 75) =0. 2877 same as Model B

1) We call P’ (Z'Z/T)P a noncentrality parameter matrix. However the scalar ‘noncentrality parameter’,
or ‘concentration parameter, ¢, in the small sample theory literature is defned as
#z = TP /zszz
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Table 1 shows two basic experimental models which have two endogenous
variables and four purely non-stochastic and orthogonal exogenous varables with zero
sample mean. These models are linear and share identical disturbance structures.
The distribution of the first endogenous variable is less disperse than that of the sec-
ond. The reduced form coefficients of the third exogenous variable are changed due
to identifying restriction swaping that variable from the first equation to the second.
In the frst model(Model A4), the structural form of both equations are overidentified
by degree one, and, in the second model(Model B), the first structural equation is
Jjust identified and the second is overidentified by two degrees. Logarithm of the
likelihood value for chosen true parameter values are same for both models such that

distributions of different forecasts are directly comparable.

Table 2 shows the experimental values of the key model parameters for the basic
model (Experiment I) and their changes on coefficient experiments. The
first (Experiment, 1) is an experiment under correct specificaton and medium sample
size of 48. This is the most favorable situation for the traditional estimators which
rely heavily on asymptotic theory and exactness of coefficient constraints. The second
(Experiment 1) is an experiment under correct specification but reduced sample size
of 24. The change in sample size will affect the sample moment matrix of Z, however
it does not affect the concentration parameter in our design. The third (Experiment
I) is an experiment under correct specification, in small samples and with lower
centrality. By scaling down the exogenous variables, the determinant of the sample
second moment matrix, and hence that of the concentration parameter matrix will
become small, so this lower central tendency cause the departure from normality.
The fourth (Experiment V) is an experiment where structural misspecification is
introduced by switching models. Hence, when model A4 is perceived as model B,
the first equation becomes overidentified by one degree less while the second equation
by one degree more. In this situation, wrongful inclusion of exogenous variable causes
the first equation to be just-identified and wrongfiul exclusion causes the second
equation to be over-identified by two degrees. Under structural misspecification and
in small samples, the behavior of the predictive distributions becomes unpredictable
because of the presence of frequent outliers in the reduced form estimators on which
our forecasts are based.

The conditional forecasts are generated from the estimated reduced form
coefficients with a priori known exogenous variables, The behavior of the individual
reduced form coefficient estimator and that of the forecast would be different even
in static models, in the sense that the the latter depends on all members of the
former. Therefore the behavior of the reduced form coefficients examined in Jeong
(1985, Chapter IV, its summary is also reported in Maasoumi and Jeong(1988)) would
guide our conjectures about the behavior of forecasts only in a limited sense.

where Z°Z=TIis assumed and B, denotes the reduced form coefficient matrix of included endo-
genous variables on the excluded exogenous variables of the equation under consideration. The
distribution of the instrumental variables estimator concentrate more as p#—oo, even if the sample
size T remain fixed. See Basemann(1963). Since we consider both IV and ML estimators and their
mixtures, we consider P’ (Z’Z/T)P as a whole.
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[Table 2] The Change of Model Parameters in Four Experiments

Key parameters Model A Model B

Experiment 1 (small samples, higher centrality, correct specification)

(a) sample size, T T=24 same as Model A

(b) sample second moment matrix, |Z"Z|=1241,1=24" same as Model A
|Z"Z|

(c) degree of overidentificarion, 2=1+1 2=0+2
v=uv,+ v,

(d) noncentrality parameter, 5.45 12.53 17.45 68.54
P(z'z2/T)P 12.53 31.56 68.54 271.59

(e) sample variability, 52.44 98. 37 -59, 58 -253. 67
Q-1(P"Z"ZP)/T ~-14. 39 -26. 60 20.29 85.41
tr(Q'(P'2°2P)/T 25. 83 25. 83

Experiment T (medium samples, higher centrality, correct specification)

(@ T T=48 same as Model A
(b) 12 Z| 1Z2°Z1=1481,1=48' same as Model A

Experiment I (small samples, lower centrality, correct specification)

by 12°2| 1Z"Z)=1,1=1.0 same as Model A
(@) P Z'zZP/T .22 .52 .73 2.86
.52 1.32 2.86 11.30
(e) Q-1(P Z"ZP)|T 2.19 4.10 -2.48 -10.57
r(Q'(P'Z"2P)/T -.60 -1.11 .85 3.56
1. 076 1. 076

Experiment IV (small samples, higher centrality, misspecification)

perceived structural model Model B Model A
(¢) v=uv,+v, 2=0+2 2=1+1

In our experiment, we consider one-period ahead conditional forecasts. The future

values of non-stochastic exogenous vaiables are given by
ze0 = (1 1 /2 0.
Hence the true values of y at T+1 for model A and B are

yroa = [ 2.578  4.657 3}
( 5407 21.629 )

,
Yrers
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For the experiment with lower centrality, we divide these by 24.

For eight SEM reduced form estimation techniques, two models in four
experiments, eight models in total, are estimated, forecasted and simulated on CDC
170/855 under NOS operating system. I used the Fortran program called the LRRF
(Lower Risk Reduced Form) program that I developed for the non-standard SEM
estimators such as PRRF, MSRF, and GRF adopting some of the subroutines for
the standard SEM estimators from Wymer's SIMUL program,” Even though we used
the program for the two equation model for experimental purpose, Jeong (1988)
demonstrates its use for macroeconometric modelling under uncertain structural
specification. For any reasonable size of the standard linear simultaneous equations
model, the LRRF program calculates the structural form and reduced form coefficient
estimates and their variance matrices, and related statistics, residuals and fitted
values, and one period lead forecasts for the following eight estimation techniques :
(1) the unrestricted least squares reduced form estimation, (2) the ordinary least
squares estimation, (3) the two stage least squares estimation, (4) the partially
restricted reduced form estimation, (5) the three stage least squares estimation, (6)
the modified Stein-like reduced form estimation, (7) the generic reduced form
estimation for specified degrees of specification uncertainty, and (8) the full
information maximum likelihood estimation.

In conducting simulation, multivariate normal random deviates with zero mean
vector and specified positive definite covariance matrix are obtained from the IMSL
subroutine GGNSM. The starting seed which initiate the random number generation
are exactly same across all experiments, hence the generated endogenous variables
(through Y=ZP+ V) remain fixed in each of eight estimation techinques. As a result
all sampling distributions of forecasts are comparable to each other. In obtaining the
empirical cumulative distribution function, two points were examined carefully. Firstly,
the chosen random deviates should not deviate from its specfied multivariate normal
distribution such that any deviation would attributable to the behavior of reduced form
estimators not to random numbers. Secondly, the number of replications should be
sufficient to stabilize the tail area behavior, since the erratic behavior of forecasts

has nonzero probability of producing outliers. The frequency count on a grid plain

and its contour map of the bi-variate normal random deviates indicates that 250
replications chosen for this study is sufficiently informative to examine the sampling
properties of various forecasts. As a result the FIML iterative procedure with a
modified version of the Newton-Raphson algorithm in the LRRF program are all

successful for 250 replications in all eight experiments.

2) The LRRF program was developed in 1984 while [ was conducting my dissertation research on
the improved reduced form estimators under Professor Esfandiar Maasoumi at Indiana University,
Bloomington. Special thanks goes to him for guiding me to this issue. For the experiments
specified in this study, the LRRF program estimates and predicts with eight different techniques
for 250 replications in about 83.5 CPU running seconds for each experiment.
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V. THE EXPERIMENTAL RESULTS

The eight sampling experiments, each of which consisting of 250 replications of
forecasts for two endogenous variables for the eight estimation techniques, generate
substantial amount of computer output. However, they examine only a series of eight
sampled set of parameter values from the continuum of parameter spaces. How can
we obtain more generally acceptable results from these limited experiments?
Experiments conducted here resemble the modelling situation which are encountered
frequently in empirical research, e.g.. small samples, departure from normality, and
misspecification, except for the consideration of dynamism which is left for the future
study. To identify the sources of erratic behavior at the tail area in unbonded
forecasts, the key model parameters and its link to reduced form estimators are
considered. Also the computer program developed for this study enable us to use
identical sequences of the generated multivariate normal distributions across
experiments, and hence it makes the experimental results comparable across
experiments and among forecasts. By this construcuon, we tried to achieve more
general informative conjectures about the choice of predictive distributions through
the use of limited but controlied set of Monte Carlo simulations.

Experimental results are reported in two forms : Tables of descriptive and range
statistics and graphs of cumulative relative frequencies. For each experiment, tables
report statistics for the two endogenous variables in model A and model B. The
predictive distributions are described in terms of the statistics of the first four central
sample moments, median, and nonparameiric range statistics. The deviation of the
sample mean from the true known values of the forecast will give the bias of the
forecasts generated from alternative reduced form estimators. The standard deviation
is nothing but the root mean squared error (RMSE) of the forecasts, which has been
a popular quadratic risk measure.

It is clear that for some forecasts, namely those whose first two moments are
unbounded, the use of this parametric measure is invalid since its decomposition into
variance and squared bias depends on the existence of finite moments. However,
the numerical values in sampling experiment are finite. So we report the descriptive
statistics of these unbounded forecasts, except for the worst forecasts which are
based on the derived reduced form of the structural OLS estimates, The skewness
and the (central) kurtosis measures may suggest some departures from normality when
they differ from zero. The comparison of the inter-range interval indicates the
thickness of tail areas to provide more detailed knowledge of the predictive

distribution.

Figures present the cumulative relative frequencies of the forecasts from the
standard reduced form estimators (ULS, DRF-2SLS, DRF-3SLS, and DRF-FIML) and
the nonstandard reduced form estimators (PRRF, MSRF, GRF(c¢=1.0) and GRF

(¢=0.05)), as well as their relative frequencies for Experiment . The cumulative
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relative frequencies approximate the cumulative predictive distributions upon which our
choice of predictor is based. The tail behavior represents the probability of producing
outliers. In general the thicker tails at both edges and the lower slope will indicate
frequent outliers and large dispersion. The forecast corresponding to the cumulative
relative frequency value of (0.5 will give the median value of the forecast which is
usually close to the true value or the sample mean for consistent estimators under
normality. The relative frequency figures at 25 sample mid-points are obtained from
the cumulative distributions, and give some idea about location, dispersion, and shape
of the p.d.f. of the forecasts. Especially the probability of producing outliers beyond
the range shown on the figure is plotted as an ‘cuth>r relative frequency' at the both
end of the empirical p.d.f.

Tables 3 through 6 are tabulated for Experiments I through IV correspondingly.
Experiment I follows standard assumptions with medium sample size (T=48), higher
centrality (due to Z’Z =481,), and correct specification. Experiment I has a smaller
sample size(T=24) compared to Experiment T, while Experiment I has lower
centrality (due to Z'Z=1,) compared to Experiment 1. And Experiment I is
misspecified by switching the perceived models, compared to Experiment IV is
misspecifed by switching the perceived models, compared to Experiment @I. From
Experiment [ to Experiment [V, several factors cause the model parameters to have
widely different values from those of Experiment I as summarized in Table 2. In order
to examine the behavior of alternative predictors under different situations, Experiment
Iis compared with Experiment I for the effect of reduced sample size, M with I
for departure from normality, and IV with @I for misspecification. In order to save
the space, figures are reported selectively. Experimental results are discussed first

and suggestions on the choice of predictor are left to the conclusion section.

1. Distributions of Forecasts Under Standard Assumptions

Table 1 and Figures 1 through 4 (for model A) report the results from Experiment
I. Under correct specification and with medium size samples(7=48), all estimators
are expected to exhibit their best performance. The asymptotic equivalence of FIML
and 3SLS, and hence the equivalence of their reduced form forecasts is clear in terms
of descriptive statistics from Table 1. Though the forecasts based on 3SLS are less
biased than those based on FIML, both have very close median values, while the
FIML forecasts are closer to a normal distribution in terms of skewness and kurtosis.
Under correct specification, the validity of the overidentifying restrictions cannot
be rejected in MSRF, and hence, with the value of A being equal to one, the MSRF
forecasts become identical to the DRF-3SLS forecasts. the GRF forecasts slightly
outperform 3SLS and FIML in terms of forecast error variance. The mean of GRF
forecasts lies between the means of ULS forecasts and DRF-3SLS forecasts, and it
becomes closer to DRF-3SLS forecasts as a smaller value of ¢ is assessed for less
uncertain structural specification. Apparantly the DRF-2SLS forecasts perform worst
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[Table 3] Experiment T :
Medium sample {T=48), higher centrality, correct specifidation

length of interval

mean st.dv. skewness kurtosis median 50% 80% 100%
i/[odel A, one-period lead forecasts of Y,=2.578, one-degree overidentified
ULS 2. 501 . 346 - 01 - 13 2.51 . 46 .93 1.92
DRF-2SLS 2. 548 . 304 .03 .03 2.55 .40 .79 1. 62
DRF-3SLS 2. 568 . 296 .03 .18 2. 57 .40 .75 1.73
DRF-FIML 2. 537 . 295 - 01 .09 2. 55 .41 .75 1.69
PRRF 2. 467 . 375 -. 18 .21 2. 48 . 47 .97 2.20
MSRF 2. 559 . 295 .03 .11 2. 57 .40 .76 1.70
GRF (¢=1.0) 2.531 . 292 .01 .09 2.55 .41 .73 1. 68
GRF (¢=. 05) 2.534 . 291 .02 .09 2. 54 .41 .74 1. 68
Model A, one-period lead forecasts of Y,=4.657, one-degree overidentified
ULS 4.408 1.214 .07 .07 4. 46 1.53 3.15 6. 76
DRF-2SLS 4.571  1.119 .12 .05 4.62 1. 54 2.77 5.98
DRF-3SLS 4.635 1.077 .13 .20 4.59 1.50 2.70 6. 37
DRF-FIML 4.520 1.077 . 06 . 09 4. 58 1.55 2. 67 6. 26
PRRF 4,384 1.296 .06 - 11 4. 44 1.72 3.31 7.27
MSRF 4.602 1.078 .11 .15 4. 58 1. 49 2. 69 6. 32
GRF (¢=1.0) 4.501 1.067 .09 .13 4.54 1. 39 2.67 6. 22
GRF (¢=.05) 4.509 1.064 .10 L1t 4. 54 1. 47 2. 66 6.21
Model B, one-period I;ad foreg;gis of Y,=5.047, just identified
ULS 5. 369 . 344 .17 .20 5. 36 .43 . 89 2.17
DRF-2SLS 5, 387 . 310 .18 .05 5.38 .40 .80 1.76
DRF-3SLS 5. 405 . 301 .10 .03 5.39 .43 .75 1. 69
DRF-FIML 5. 393 . 302 .09 .02 5.39 .42 .76 1. 67
PRRF 5. 369 . 344 .17 .20 5. 36 .43 . 89 2.17
MSRF 5. 405 . 301 .10 .03 5.39 .43 .75 1. 69
GRF (¢=1.0) 5. 390 . 300 .14 .06 5. 38 .41 .76 1.71
GRF (c=. 05) 5.39%4 . 302 .09 .02 5.59 .42 .76 1. 67
Model B, one-period lead forecasts of Y,=21.629, two-degree overidentified
ULS 21.490 1.210 .22 .36 21.40 1. 56 3.07 7.61
DRF-2SLS 18.383 1.155 .19 .22 21.49 1. 46 2.97 6. 78
DRF-3SLS 21.597  1.120 .10 .21 21.58 1. 46 2. 80 6. 50
DRF-FIML 21.563 1.124 . 08 .19 21.58 1. 48 2.74 6. 43
PRRF 21.452 1.299 .20 .36 21.38 1. 68 3.31 8. 52
MSRF 21.597  1.120 .10 .21 21.58 1. 46 2.80 6. 50
GRF (¢=1.0) 21.554  1.115 .13 .24 21.51 1.38 2. 83 6. 54
GRF (¢=. 05) 21.564  1.123 .09 .19 21.58 1. 45 2.76 6. 44
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among efficient SEM estimators, and the ULS forecasts perform worst among all
standard SEM estimators, because they ignore some or all of the structural information
under correct specification. Under correct specification, ULS is not a recommendable
forecasting method, since it ignores structural information and that causes a
substantial loss of efficiency. Surprisingly, the PRRF forecasts do not outperform
either the ULS forecasts or the DRF-2SLS forecasts, even though PRRF incorporates
more of the correct structural information than the ULS and it possesses all finite
moments. This happens in the situation where the experimental design satisfies Nagar
and Sahay’s (1978, p 234) requirement that the absolute value of the included other
endogenous variable is less than one( 5 in the first equation), Figures 1 through 4
demonstrate that the ULS forecasts behave differently from the standard SEM
forecasts, and that the PRRF forecasts deviate from the MSRF or GRF forecasts
which perform as well as the DRF-FIML or DRF-3SLS forecast, for all Y, and VY,

in the models of different overidentifying degrees.

2. Distributions of Forecasts Under Small Samples

Table 4 and Figures 5 through 8 report the results from Experiment 1. Compared
to Experiment I, the risk(in terms of standard deviation of the samples) is increased
overall by around 60%, when the sample size is halved. With reduced sample size,
the length of the 80% central interval(inter-quintile range) is increased by about 45%,
while that of the whole range of the samples is increased by about 75% in general
This indicates that the tail areas of almost all the forecasts become much fatter.
Therefore we are more likely to produce forecasts which deviate significantly from
the true values. When the sample size is halved, the differences between the
DRF-FIML and DRF-3SLS forecasts and the MSRF and GRF forecasts are still neg-
ligible. However, the PRRF forecasts exhibit significantly fatter lower tail areas. See
Figures 10 and 12. Even so, the general observations of Experiment [ about the
relative performance of the different forecasts are maintained in small sample
situations. ‘Steijnian’ issues related to the statistical improvement of a positive-part
MSRF prediction upon traditional DRF-3SLS forecasts in small samples, are not
observed in this experiment. This may be due to the design of the MSRF estimator
which becomes almost identical to DRF-3SLS under correct specification and at usual

significance level.

3. Distributions of Forecasts Under Departures from Normality

Table 5 and Figures 9 through 16 report the results from Experiment WM. The
sample second moment matrix of exogenous variables, Z’Z, is changed from 24 I,
in Experiment I to I, in Experiment I. The value of the concentration parameter

for the system, PZZP/T and hence, the sample variability matrix Q'P'Z'ZP|T



[Table 4] Experiment I :
Small sample (T=24),

higher centrality,
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correct specification

length of interval

mean st.dv. skewness kurtosis median 50% 80% 100%
Model A, one—pg;i;)d lead forecasts of Y,=2. 578, one-degree overidentified
ULS 2. 479 . 519 -. 18 .28 2. 50 .63 1. 33 2.93
DRF-2SLS 2. 562 . 457 - 27 .81 2. 58 .54 1.12 2. 81
DRF-3SLS 2. 586 . 443 - 15 .84 2. 58 .53 1. 11 2.83
DRF-FIML 2. 529 . 436 - 05 04 2.53 . 52 1.08 2.95
PRRF 2. 412 . 573 -. 26 35 2. 46 .67 1. 47 3.38
MSRF 2. 553 . 446 - 11 .70 2. 56 .55 1. 16 2.84
GRF (¢=1.0) 2,517 . 440 - 14 .91 2.53 . 50 1.07 2. 80
GRF (¢=. 05) 2. 522 . 432 -. 16 .89 2.53 .52 1. 08 2.75
Model A, one-period lead forecasts of Y,=4.657, one-degree overidentified
ULS 4.332 1.834 -, 22 .45 4,43 2. 19 476 11.14
DRF-2SLS 4.636 1.687 -. 34 .74 4,65 1. 99 4.05 10.13
DRF-3SLS 4.704 1.631 -.21 .77 4. 69 1.93 4.06 10.21
DRF-FIML 4,491 1.612 - 15 .84 4. 47 1. 99 3.98 9.89
PRRF 4.305 1.936 - 22 .22 4. 39 2.32 507 11.16
MSRF 4,584 1.640 - 19 .62 4. 64 1.94 4.29 10.27
GRF (¢=1.0) 4,451 1.619 -. 23 .81 4. 46 1. 89 4.03 9,97
GRF (c=. 05) 4.463 1.593 - 25 .78 4. 43 1. 90 4.00 9. 86
Model B, one-period lead forecasts of Y, =5. 047, just identified -
ULS 5. 308 . 519 -. 18 .28 5.33 . 63 2. 50 2.93
DRF-2SLS 5.339 . 461 -. 09 .71 5.35 .55 1.33 2. 86
DRF-3SLS 5.372 . 447 .04 .73 5.37 .49 1.14 2.76
DRF-FIML 5. 352 . 446 .04 .76 5. 36 . 50 1. 14 2.77
PRRF 5. 308 . 519 -. 18 .28 5.33 . 63 1. 11 2.93
MSRF 5.372 . 447 .04 .73 5.37 .49 1.33 2.76
GRF (¢=1.0) 5. 345 . 447 .01 .70 5. 36 .51 1.14 2.80
GRF (¢=. 05) 5. 363 . 447 .05 .76 5. 36 .51 .1.14 2.77
Model B, one-period lead forecasts of ¥,=21.629, two-degree overidentified
ULS 21.304 1.834 -.22 .45 21.41 2.19 4.76 11.14
DRF-2SLS 21.358 1.733 -.20 .71 21.45 1.99 4.36 10.99
DRF-3SLS 21.490 1.674 -. 08 .74 21.54 1.72 4.42  10.59
DRF-FIML 21.434 1.674 - 07 77 21.44 1.73 4.31 10.60
PRRF 21.231  1.978 -. 26 .26 21.34 2.54 513 11.25
MSRF 21.490 1.674 -.08 .74 21.54 1.72 4.42  10.59
GRF (¢=1.0) 21.413  1.671 - 10 .74 21.48 1.75 4.31 10.69
GRF (¢ =. 05) 21.439 1.675 -. 07 .78  21.46 1.71 4.28 10.60
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becomes smaller in magnitude (in terms of its determinant). It is well known in exact
density theory that the smaller value of the non-centrality parameter (means-sigma
matrix) adversely affects the p.d.f. of the instrumental variable estimators. Even
though the sample size remains unchanged compared to Experiment I, the
lower-centrality affects the DRF-2SLS and DRF-3SLS forecasts substantially
(Basmann (1963)). Especially in model 4 in Experiment H, where all equations are
overidentified by one degree, the interval of the whole samples becomes almost
infinitely wider than the inter-quintile interval for the standard reduced form
forecasts ! (about 280 times wider for DRF-2SLS, 200 times for DRF-3SLS, and 40
times for DRF-FIML forecast) A serious outlier problem still remains in model B for
DRF-2SLS and DRF-3SLS but to a much lower degree. The MSRF forecasts are spe-
cific to the specification test methods employed, because, for the same disturbance
structures, the value of A in the MSRF forecast in model 4 is almost equal to 1G. e.,
MSRF becomes identical to DRF-3SLS), while it is a great deal less than 1 in model
B such that outliers are removed. The size of the whole sample range interval is
230 times wider than that of the inter-quintile interval for the MSRF forecast in model
A, while it is only 2.5 times wider in model B. This indicates that the local power
of the specification test is specific to the model parameters, In this sense it is im-
portant to compare alternative forecasts from different estimation techniques in the
same spirit as Hausman's (1978) specification test.

The empirical c¢.d.f.’s of the DRF-2SLS forecast and the DRF-3SLS forecasts in
Figures 9 and 13(and, for some cases, those of the MSRF forecasts in Figures 10
and 14) suggest that these forecasts cause unbounded risk in finite samples and under
lower centrality. Contrary to traditional emphasis on the sample size in asymptotic
theory, the concentration parameter in terms of the sample second moment matrix
of exogenous variables is a more important factor in detecting departures from
normality. The lower centrality seriously affects the distribution of estimators and
forecasts as evidenced by the significant outliers in Experiment I compared to Ex-
periment 1. The third and fourth sample moments are far from zero. In this
situation, the GRF forecasts and the DRF-FIML forecasts outperform all other
forecasts in most cases. The ULS and PRRF forecasts become relatively better under
the erratic behavior of DRF-2SLS and DRF-3SLS, ’Outlier frequencies’ at both ends
of the empirical p.d.f. in Figures 11 and 12 for Y, and Figures 15 and 16 for more
dispersely distributed Y, clearly demonstrate the seriousness of the departure from

normality in these experiments.

4. Distributions of Forecasts Under Exclusion-Inclusion Misspecifications

Table 6 and Figures 17 through 20 report the results from Experiment V. The
structural misspecification considered here is of the exclusion and inclusion type.
Under serious misspecification, the ULS forecasts perform consistently well throughout
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[Table 5] Experiment II :
Smalli sample (T=24), higher centrality, correct specifidation

length of interval
mean st.dv. skewness kurtosis median 50% 80% 100%

Model A, one-period lead forecasts of Y,=.526, one-degree overidentified

ULS . 427 . 519 -. 18 .28 .45 .63 1. 33 2.93
DRF-2SLS 4.082 44.523 14.67 222.83 .64 .92 2.52 706.02
DRF-3SLS 2.223 24.159 15.62 245.84 .65 .84 1.91 387.52
DRF-FIML .648  3.099 15.26 238.33 .44 .55 1.28 49.77
PRRF . 321 . 557 . 017 . 003 . 36 .70 1. 46 3.04
MSRF 2.037 24.125 15. 707 247.728 .54 .75 1.62 387.52
GRF (¢=1.0) . 439 . 469 -. 319 . 371 .47 .60 1. 30 2. 86
GRF (¢=, 05) . 438 . 505 -. 250 . 272 .45 .62 1.35 2. 87
Model A, one-period lead forecasts of Y,=0.951, one-degree overidentified s
ULS .626  1.834 - 22 .45 .73 2.19 4.76 11.14
DRF-2SLS 12. 818 147.477 14.83 227.03 1. 42 3.09 8.49 2345. 45
DRF-3SLS 6. 748 80.421 15.62 245.90 1. 46 2. 83 6. 39 1289.22
DRF-FIML 1.372  10.250 15.67 236.54 .75 2.03 4.55 164.89
PRRF . 63471. 853 -.23 .39 .73 2.28 4.87 11.08
MSRF 6. 024 80.294 15.72 248.06 1. 00 2. 55 5.69 1288. 34
GRF (¢=1.0) .684 1.767 -. 40 .51 .76 2.09 4.73 10.73
GRF (c=. 05) .678 1.796 -.33 .37 .78 2. 24 4.82 10.72
Model B, one-period lead forecasts of Y,=1.104, just identified

ULS 1.004  .519 - 18 .28 103 .63 1.33 293
DRF-2SLS .898 2.534 -14.05 212.53 1. 09 . 60 1.35  40.95
DRF~3SLS 1. 094 . 744 -7.09 82.73 1.13 .47 1.17  10. 44
DRF-FIML 1. 036 . 440 .05 .73 1. 05 .50 1.11 2.79
PRRF 1. 004 . 519 - 18 .28 1.03 .63 1. 33 2.93
MSRF 1.132 . 461 - 11 .97 1.13 .47 1.17 3.03
GRF (¢=1.0) 1. 044 . 443 .00 .77 1. 04 .47 1.11 2. 88
GREF (¢=. 05) 1. 045 . 446 - 06 . 80 1. 06 .48 1.13 2.89
Model B, one-period lead forecasts of Y,=4, 415, two-degree overidentified o
ULS 4.090 1.834 - 22 .45 4.19 2. 19 476 11.14
DRF-2SLS 3.513 10.116 -14.20 215.83 4,28 2. 16 529 164.07
DRF-3SLS 4.289  2.908 -7.60  90.74 4. 46 1. 81 4.65 41.31
DRF-FIML 4,175 1.654 - 12 .77 4,22 1.83 4.18 10.68
PRRF 3.933  1.985 -. 29 .25 4,03 2. 50 511 11.20
MSRF 4.444 1.733 - 24 .93 4. 45 1.78 4.63 11.00
GRF (¢=1.0) 4.198 1.658 -.15 .81 4.23 1.79 4.24 10.77
GRF (¢=. 05) 4.191 1.674 - 20 .81 4,22 1.77 4.26 10.70
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[Figure 9] EMPIRICAL CUMULATIVE DISTRIBUTIONS FROM 250 REPLICATIONS

CUMULATIVE RELATIVE FREQUENCY
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[Figure 14] EMPIRICAL. CUMULATIVE DISTRIBUTIONS FROM 250 REPLICATIONS
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the model because ULS does not incorporate any structural identifying restrictions.
As a mixture of ULS and structural 2SLS, the PRRF forecasts also have nice
distributions which are very similar to those of the ULS forecast. The distributions
of the DRF-3SLS and DRF-2SLS forecasts are the worst among predictors because
of the non-existence of moments of underlying derived reduced form estimators. In
small samples these unbounded moments are seriously aggravated by the structural
misspecification as demonstrated in our experimental models which has four endo-
genous variables with varieties of identification degrees. Unbounded risk is obvious
in these situations. Even though the DRF-FIML forecasts have finite moments,
DRF-FIML incorporates structural specification constraints in an exact manner, hence,
the resulting forecasts are sensitive to structural misspecification. See Figures 17 and
19.

The MSRF forecasts exhibit contradictory behavior in model 4 and model B. As
expected from the previous discussions, when the Wald type specification test
successfully rejects the wrongful restrictions, they outperform all alternative
forecasts (Figures 18 and 20). But, when it cannot reject them for a given significance
level, they behave just as poorly as the DRF-3SLS forecasts (the case of model 4
in Table 6). In terms of the R. M. S E. criterion, the MSRF forecasts have the lowest
risk in model B, but as high a risk as the DRF-3SLS forecasts in model A.

Under serious misspecification, the GRF forecasts do not provide distributions
which are as ‘good’ as those of ULS or PRRF forecasts. However, the GRF forecasts
do provide better predictive distributions than any other of the efficient structural SEM
estimators studied. In fact, a model builder's assessed value for ¢ as a measure of
prior structural specification uncertainty does not change the performance of the GRF
forecasts very much as is clear from the comparison of Figures 18, and 20. This
confirms our earlier observations from the distributions of the GRF reduced form

coefficient estimates in Maasoumi and Jeong(1988) and Jeong(1985).

V. SUMMARY AND CONCLUSION

As was emphasized at the beginning of Section 2, our goalt in this Monte Carlo
study is to find a ‘good’ predictive distribution, one that perform reasonably well
relative to other alternative forecasts in various experimental situations controlled in
terms of the model parameter changes. In Experiments I and 1, standard efficient
SEM estimators provide reasonable forecasts, However, in Experiments Il and IV,
where the reduced form coefficient estimators are seriously affected by the sample
second moment matrices and the correctness of the imposed specification constraints,
the derived reduced form esiimators without finite moments tend to make bad



[Table 6] Experiment IV :
Small sample (T=24),

higher centrality,

misspecification
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length of interval

mean st.dv. skewness kurtosis median 50% 80% 100%
Model A, forecasts of Y,=2.578, v,=1 misspecified as v»,=0
ULS 2.479 . 519 -.18 . 28 2.50 .63 1.33 2.93
DRF-2SLS -1.027 44.819 .14 56.15 .44 509 25.67 779.69
DRF-3SLS 1.010 25.321 2.31  59.44 1.67 3.19 13.99 461.85
DRF-FIML 2.428 1.390 -. 55 . 67 2.73 1. 50 3.95 8.45
PRRF 2.479 .519 - 18 .28 2.50 .63 1.33 2.93
MSRF 1.040 25. 322 1.31  59.43 1.93 3.16  13.99 461.85
GRF (¢=1.0) 2.983 . 678 .03 -. 47 3.01 1. 00 1.76 3.43
GRF (¢=.05) 2. 981 . 743 .12 4.90 2.93 1.11 1.95 3.81
Model A, forecasts of Y,=4,657, v,=1 misspecified as v,=2
ULS 4332 1.834 - 22 .45 4. 43 2.19 476 11.14
DRF-2SLS -2. 257 106. 369 .36 57.58 1.08 12.40 57.33 1882.57
DRF-3SLS 2. 406 60. 853 1.35 60.08 4.17 7.65  33.02 1115.13
DRF-FIML 4.750 4. 452 -. 60 .29 5.41 526 12.56 24.30
PRRF 5.855 1.390 .17 .31 5. 80 1.62 3.57 8.00
MSRF 2.212 60. 845 1.36  60. 14 3. 81 7.25  33.02 1115.13
GRF (¢=1.0) 6.186  2.455 -. 06 -. 48 6. 37 3.52 6.31 12.39
GRF (¢=, 05) 6.186  2.455 -, 06 - 48 6. 37 3.52 6.31 12.39
Model B, forecasts of Y,+5.407, v,=0 misspecified as v,=1
ULS 5308 .519  -~18 .28 533 .63 133  2.93
DRF-2SLS 15.109 117. 654 15.18 236.15 5.34 4.07 10.80 1906. 14
DRF-3SLS 12.484 88. 047 15.26 238.17 5.74 2. 47 7.12 1450. 06
DRF-FIML 3.501 6.103 .40 58.28 3.88 3.35 5.68 109.49
PRRF 5.370 .519 - 20 . 30 5.39 . 66 1.34 2. 87
MSRF 5. 314 . 517 - 17 . 26 5.34 .62 1.37 2. 94
GRF (¢=1.0) 5.328 . 707 .16 - 21 5.28 1. 01 1.76 3.76
GRF (¢ =, 05) 5. 384 . 637 .31 .85 5.34 .79 1. 60 4.34
Model B, forecasts of Y,=21.629, v,=2 misspecified as v,=1
ULS 21.304 1.834 - 22 .45 21. 41 2.19 476 11.14
DRF-2SLS 59. 248 456. 966 15.16 235.74 22.44 15.05 43.41 7404.70
DRF-3SLS 49. 033 341. 950 15.25 237.80 23.00 9.44 28.73 5634. 29
DRF-FIML 14.662 23.727 .40 5859 16.23 12.92 21.39 424.91
PRRF 21.277  1.936 - 22 .22 21.36 2.32 509 11.16
MSRF 21.325 1.830 - 22 .43 21.45 2.16 4.79 11.19
GRF (¢=1.0) 21.363 2,332 11 .01 21.27 3.09 6.09 12.90
GRF (¢=.05) 21.558 2.154 .25 1.00 21.46 2.73 5.62 14.79

*¥* V. (V,) =the degree of overidentification of the first (second) equation
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forecasts exhibiting unbounded risks, as shown by fatter tail areas. The contrasts
between the traditional SEM forecasts (Figure 17 or 19, for example) and the lower
risk reduced form forecasts (Figure 18 or 20 respectively) demonstrate how important
the choice of predictive distributions is under general quadratic risk criteria. With
identical data set and under the same structural specifications, the choice of the
reduced form estimator matters for risk involved in forecasting. The conclusion about
the choice of predictive distribution may be summarized as follows based on our Monte
Carlo simulations,

1) The GRF forecast with ‘unsure’ structural specification outperforms all the
existing SEM estimators (except for the DRF-FIML forecast for some cases) under
general quadratic risk measures. As a matrix weighted average of ULS and DRF-3SLS
forecasts, it mixes more prior information under correct specification, and it mixes
more sample information under structural misspecification and with erratic behaviors
(infinite moments) in DRF-3SLS. Hence it provides reasonable predictive distributions
in almost all situations.

2) The DRF-FIML forecast is the only standard efficient SEM forecast which has
some finite moments. Contrary to traditional beliefs in analytic studies, it performs
very well in small samples under correct specification, and reasonably well under low
centrality and even under misspecification. The reasonable performance of FIML
predictive distribution may be due to the existence of some finite moments and the
higher centrality which favors normality assumption.

3) The MSRF forecast does not perform as well as expected as a member of
the class of ‘Steinian’ estimators. Especially in Model 4 where both equations are
overidentified by one degree, the Wald type asymptotic specification test employed
found to be not powerful enough to discriminate the erratic behavior of DRF-3SLS
reduced form, In this situation, the MSRF forecast behaves just like DRF-3SLS
forecast. However, in model B where one equation is just identified and the other
equation is overidentified by two degrees, the MSRF predictive distribution optimally
combines ULS and DRF-3SLS predictive distributions and outperforms all the traditional
SEM forecasts. In this setting, the MSRF forecast even outperform the GRF forecast
in some cases.

4) The DRF-3SLS forecast is asymptotically equivalent to the DRF-FIML forecast
under correct specification and higher centrality. In this situation, it performs as well
as DRF-FIML ever with non-existence of moments. This Monte Carlo study indicates
that the problem that forces erratic behavior of the DRF-3SLS forecast is the
non-existence of moments and that this abnormality is mostly affected by the departure
from normality due to either the lower sample second moment matrix of exogenous
variables or the incorrect coefficient constraints,

5) The ULS forecast ignores the structural coefficient constraints defined in (9).
When these constraints are true it suffers loss of efficiency, but, when these
constraints are incorrect, it is benifited by ignoring such information and it out

performs those estimators that are seriously affected by this misspecification.
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6) The PRRF forecast mixes the ULS estimates and the structural-2SLS estimates
not in an optimal way but in an approximate way. Its performence is worst among
all SEM estimators under correct specification and/or with higher centrality. However,
it does perform relatively well under misspecification for the same reason that the
ULS forecast does.

7) The DRF-2SLS forecast exhibits the worst performance in this experimental
study. This is an important result when we consider its popularity amongst applied
macro economists despite a decade of warnings from small sample theorists.

Our experiments, as is the case with all Monte Carlo studies, are limited to
representing only a small set of parameter space in which the SEM resides.
Diversification of the identifiability conditions restricts the number of endogenous and
exogenous variables involved in our experimental design. This may be unfavorable
for some estimators and predictors, especially for MSRF, since the preliminary test
employed has little power to discern just-identified misspecification. However we will
leave more detailed exploration of the properties of these predictors in more diverse

situations for future study.
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